K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

( Hình mình hk vẽ nha bạn, thông cảm -.- )

a,

*Xét tam giác MAB và tam giác MDC có:

+ MB = MC ( vì M là trung điểm của BC )

+ Góc BMA = góc DMC ( 2 góc đối đỉnh )

+ AM = AD ( gt )

\(\Rightarrow\)Tam giác MAB = tam giác MDC (c.g.c)

*  Vì tam giác ABC vuông tại A \(\Rightarrow\)góc ABC + góc ACB = 90\(^0\)

Mà góc ABC = góc MCD ( vì tam giác MAB = tam giác MDC )

\(\Rightarrow\)Góc ACB + góc MCD = 90 \(^0\)

\(\Rightarrow\)Góc DCA = 90\(^0\)

\(\Rightarrow\)AC vuông góc CD

b,  Xét tam giác BAN và tam giác DCN có 

+ BA = DC ( vì tam giác MAB = tam giác MDC )

+ Góc BAC =  góc DCA = 90\(^0\)

+ AN = NC ( vì N là trung điểm của AC )

\(\Rightarrow\)Tam giác BAN = tam giác DCN ( c.g.c )

\(\Rightarrow\)BN = DN ( 2 cạnh tương ứng )

                                k mình nhaaaaaaaaaaaaaaaaaaa

29 tháng 10 2020

A B C H D I M K

+ Ta có 

M là trung điểm BC (đề bài) 

HM=DM (đề bài) => M là trung điểm HD

=> BHCD là hình bình hành (Tứ giá có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hbh) 

=> BH//CD mà BH vuông góc AC => CD vuông góc AC 

+ Từ I dựng đt vuông góc với AC cắt AC tại K

Xét tg ADC có

CD vuông góc AC (cmt)

IK vuông góc AC

=> IK//CD (cùng vuông góc với AC)

Ta cũng có I là trung điểm của AD

=> K là trung điểm của AC (trong 1 tg đường thẳng đi qua trung điểm của 1 cạnh // với 1 cạnh của tg thì đi qua trung điểm của cạnh còn lại) => IK là trung trực thuộc cạnh AC của tg ABC (1)

+ Xét tg AHD có

I là trung điểm của AD (đề bài)

M là trung điểm của HD (cmt)

=> IM là đường trung bình của tg AHD => IM//AH mà AH vuông góc với BC => IM vuông góc với BC => IM là đường trung trực thuộc cạnh BC của tg ABC (2)

Từ (1) và (2) => I là giao của 3 đường trung trực của tg ABC

29 tháng 10 2020

A B C H M D I

Ta có: I là trung điểm của AD; M là trung điểm HD 

=> IM là đường trung bình của tam giác AHD 

=> IM //AH  mà AH vuông BC ; M là trung điểm BC 

=> IM là đường trung trực của BC  (1)

Ta có: M là trung điểm BC; M là trung điểm HD

=> HCDB là hình bình hành 

=> DC // BH mà BH vuông AC => DC vuông AC 

=> Tam giác ACD vuông tại C 

=> IC = 1/2 AD=> IC = AI => I thuộc đường trung trực của AC (2)

(1); (2) => I là trung trực của tam giác ABC

10 tháng 1 2022

10 tháng 1 2022

TK

 

a) Xét ΔAND và ΔCNB có 

NA=NC(N là trung điểm của AC)

\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)

ND=NB(N là trung điểm của BD)

Do đó: ΔAND=ΔCNB(c-g-c)

b) Ta có: ΔAND=ΔCNB(cmt)

nên AD=BC(hai cạnh tương ứng)

Ta có: ΔAND=ΔCNB(cmt)

nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)

mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

2 tháng 11 2017

a, Có D là trung điểm BC => BD = DC

Xét 2 tam giác ADB và ADC có

AD chung

BD = CD ( chứng minh trên )

AB = AC ( giả thiết)

=> tam giác ADB = tam giác ADC

b, Có tam giác ADB = tam giác ADC => góc ADB = góc ADC

Mà  góc ADB + góc ADC = 180 độ

=> góc ADB = góc ADC =90 độ => AD vuông góc BC

7 tháng 3 2018

tam giác có 2 cạnh bằng nhau là tam giác cân. Lấy BC làm đáy nối D lên A. Chắc chắn tam giác đó được : làm 2. AD= DC Cạnh 2 tam rác = nhau. Hết