Một tam giác có số đo độ dài của các đường cao là những số nguyên dương và đường tròn nội tiếp tam giác có bán kính bằng 1. Chứng minh tam giác đó là tam giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
=> ax = by = cz = a+b+c [*]
ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử: 0 ≤ x ≤ y ≤ z =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1 => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại
*x=2 =>1/y+1 / z= ½. Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4 => 2a = 4b = 4c Áp dụng BDT tam giác vào tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3 => a=b=c=> tam giácABC:đều (đpcm).
bạn tự vẽ hình nhé
gọi O là tâm dường tròn nội tiếp tam giác ABC
Vì AB=AC=5cm ==> tam giác ABC cân tại A KẺ đường cao AH ==>AH đồng thời là đường trung tuyến
==>BH=6/2=3cm
áp dụng py ta go tính được AH=4cm
đặt OH=OK=x rồi áp dụng vào 2 tam giác vuông tính là ra
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Một cung lượng giác trên đường tròn định hướng có độ dài bằng bán kính thì có số đo 1 rad hoặc -1 rad.
Do đó, một cung lượng giác trên đường tròn định hướng có độ dài bằng hai lần bán kính thì số đo theo rađian của cung đó là 2 rad hoặc – 2 rad.
Suy ra B đúng.
1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=
mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)
S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)
2) ABC vuông tại A ( 62+82 =102)
M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại I
=> OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)
câu 2 ; theo đề bài ta có tam giác ABC vuông tại A
VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]
Do đó OI song song với AB[cùng vuông góc với AC]
theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)
mà IC=AC =8/2=4 cm
thay vào giải ra OI=6*4/8=3 cm
còn câu 1 tớ cũng đang định hỏi đây