Tìm no đa thức sau:
a) ( x+2).(x-1) b) 6+1
giúp mik vs T.T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left(x-3\right)^2=\left(x-1\right)\left(x+1\right)\left(x-3\right)^2\)
\(2x^3.5x^2+2x=\left(10x^5+2x\right):\left(2x-1\right)\)
\(=5x^4+\dfrac{5}{2}x^3+\dfrac{5}{4}x^2+\dfrac{5}{8}x+\dfrac{11}{16}\)(dư \(\dfrac{11}{16}\))
\(a,A=\left|2-4x\right|-6\ge-6\\ A_{min}=-6\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,x^2+1\ge1\Leftrightarrow B=1-\dfrac{4}{x^2+1}\ge1-\dfrac{4}{1}=-3\\ B_{min}=-3\Leftrightarrow x=0\)
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(=x-2x^2+2x^2-x+4\)
\(=4\). Đây là hàm hằng nên không có nghiệm.
b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
\(=x^2-5x-x^2-2x+7x\)
\(=0\). Đây là hàm hằng nên không có nghiệm.
c) \(H\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)
Vì : \(H\left(x\right)=x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Nen đa thức này vô nghiệm.
\(a,=\left(m-y\right)\left(m+y\right)+a\left(m+y\right)=\left(m+y\right)\left(m-y+a\right)\\ b,=3x\left(y-1\right)+\left(y-1\right)\left(y+1\right)=\left(y-1\right)\left(3x+y+1\right)\)
a: \(=\left(m-y\right)\left(m+y\right)+a\left(m+y\right)\)
\(=\left(m+y\right)\left(m-y+a\right)\)
a) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
b) Ta có: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
c) Ta có: \(x^5+x+1\)
\(=x^5+x^2-x^2+x-1\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
a) `3x+5 =0`
`3x=-5`
`x=-5/3`
`b) -4x+8=0`
`-4x =-8`
`x=2`
`c) 3x -6=0`
`3x=6`
`x=2`
`d)x^2 +x =0`
`x(x+1) =0`
`=>[(x=0),(x=-1):}`
`e) x^2 -4 =0`
`x^2 =4`
`=> x = +-2`
`f) x^3 -27 =0`
`x^3 =27`
`=> x=3`
`g) 3x^2 +4 =0`
`3x^2 =-4`
`x^2 =-4/3(vô-lí)`
=> Đa thức ko có nghiệm
h) `x^3 -4x =0`
`x(x^2 -4) =0`
`=>[(x=0),(x^2=4 => x=+-2):}`
i) `2x^3 -32x =0`
`2x(x^2 -16)=0`
`=>[(2x=0),(x^2=16):}`
`=>[(x=0),(x=+-4):}`
a)Đặt A (x) = 0
hay \(3x-6=0\)
\(3x\) \(=6\)
\(x\) \(=6:3\)
\(x\) \(=2\)
Vậy \(x=2\) là nghiệm của A (x)
b) Đặt B (x) = 0
hay \(2x-10=0\)
\(2x\) \(=10\)
\(x\) \(=10:2\)
\(x\) \(=5\)
Vậy \(x=5\) là nghiệm của B (x)
c) Đặt C (x) = 0
hay \(x^2-1=0\)
\(x^2\) \(=1\)
\(x^2\) \(=1:1\)
\(x^2\) \(=1\)
\(x\) \(=\overset{+}{-}1\)
Vậy \(x=1;x=-1\) là nghiệm của C (x)
d) Đặt D (x) = 0
hay \(\left(x-2\right).\left(x+3\right)=0\)
⇒ \(x-2=0\) hoặc \(x+3=0\)
* \(x-2=0\) * \(x+3=0\)
\(x\) \(=0+2\) \(x\) \(=0-3\)
\(x\) \(=2\) \(x\) \(=-3\)
Vậy \(x=2\) hoặc \(x=-3\) là nghiệm của D (x)
e) Đặt E (x) = 0
hay \(x^2-2x=0\)
⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)
⇒\(\left(x-2\right)x\)
⇔ \(x.\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)
f) Đặt F (x) = 0
hay \(\left(x^2\right)+2=0\)
\(x^2\) \(=0-2\)
\(x^2\) \(=-2\)
\(x\) \(=\overset{-}{+}-2\)
Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm
Vậy đa thức F (x) không có nghiệm
g) Đặt G (x) = 0
hay \(x^3-4x=0\)
⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)
⇒ \(\left(x-4\right)x^2=0\)
⇔ \(x.\left(4x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)
h) Đặt H (x) = 0
hay \(3-2x=0\)
\(2x\) \(=3+0\)
\(2x\) \(=3\)
\(x\) \(=3:2\)
\(x\) \(=\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)
CÂU G) MIK KHÔNG BIẾT CÓ 2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA
`a) A(x) + M(x) = B(x)`
`->( 2x^2 - 5 + 9x ) + M(x) = ( 3x^2 + 9x - 1 )`
`-> M(x) = ( 3x^2 + 9x - 1 ) - ( 2x^2 - 5 + 9x )`
`-> M(x) = 3x^2 + 9x - 1 - 2x^2 + 5 - 9x`
`-> M(x) = x^2 + 4`
__________________________________
`b)` Cho `M(x) = 0`
`-> x^2 + 4 = 0`
`-> x^2 = -4` (Vô lí vì `x^2 >= 0` mà `-4 < 0`)
Vậy đa thức `M(x)` không có nghiệm
a, ta có A(x) + M(x)= B(x)
=> M(x)= B(x) - A(x)= (3x2+9x-1) -(2x2-5+9x)
= 3x2+9x-1 -2x2 +5 -9x
= (3x2-2x2) +( 9x-9x)+(5-1)
= x2 +4
b, Ta có x2> hoặc bằng 0 => x2+4 >0
a; Ta có: (x+2).(x-1)=0
Suy ra : x-2=0 hoặc x-1=0
Suy ra x=2 hoặc x=1
Vậy nghiệm của đa thức là 2 và 1
b, Tương tự nha ! hihi