K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

A=1+1/32+1/34+.....+1/3100

=>32.A=9+1/3+/32+...+1/398

=>9A-A=(9+1/3+1/32+....+1/398)-(1+1/32+1/34+.+1/3100)

=>8A=9-1/3^100=9-1/3^n

=>1/3^100=1/3^n

=>3^100=3^n

=>n=100

Vay n=100

3 tháng 2 2017

A=.............

=>\(9A=9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

=>\(9A-A=\left(9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)\)

=>\(8A=9-\frac{1}{3^{100}}\)

=>n=100

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

13 tháng 12 2021

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

16 tháng 12 2021

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

15 tháng 12 2021

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

NV
5 tháng 3 2021

\(A=1+3^2+3^4+...+3^{102}\)

\(9A=3^2+3^4+...+3^{102}+3^{104}\)

\(\Rightarrow9A-A=3^{104}-1\)

\(\Rightarrow8A=3^{104}-1\)

\(\Rightarrow A=\dfrac{3^{104}-1}{8}\)

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv