K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vì a=by+cz => by=a-cz

mà c=ax+by => by=c-ax

=>a-cz=c-ax (=by)

=> a+ax=c+cz

=> a(x+1)=c(z+1)

tương tự với c=ax+by và b=ax+cz

=> c(z+1)=b(y+1)

=> a(x+1)=b(y+1)=c(z+1)

đặt a(x+1)=b(y+1)=c(z+1)=k

=> 3k=a(x+1)+b(y+1)+c(z+1)

ta có

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{1+z}=\frac{a}{a\left(x+1\right)}+\frac{b}{b\left(y+1\right)}+\frac{c}{c\left(z+1\right)}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)

\(\frac{3\left(a+b+c\right)}{3k}=\frac{3\left(a+b+c\right)}{\text{ }a\left(x+1\right)+b\left(y+1\right)+c\left(z+1\right)}=\frac{3\left(a+b+c\right)}{ax+a+by+b+cz+c}\)

\(=\frac{3\left(a+b+c\right)}{\left(a+b+c\right)+\left(ax+by+cz\right)}=\frac{3\left(a+b+c\right)}{\left(a+b+c\right)+\frac{1}{2}\left[\left(ax+by\right)+\left(by+cz\right)+\left(cz+ax\right)\right]}\)

ta thấy a+b+c= (ax+by)+(by+cz)+(cz+ax)

\(\Rightarrow\frac{3\left(a+b+c\right)}{\left(a+b+c\right)+\frac{1}{2}\left(a+b+c\right)}=\frac{3\left(a+b+c\right)}{\frac{3}{2}\left(a+b+c\right)}=\frac{3}{\frac{3}{2}}=2\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)ko phụ thuộc vào a,b,c

26 tháng 5 2017

Học hành thế này! Tớ mách cô Hiền nhé!

28 tháng 6 2021

\(1.\)

Theo đề ra, ta có:

\(ax+by=c\)

\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(cx+by=b\)

\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)

Khi đó ta có:

\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)

9 tháng 7 2017

giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0 

Vậy ...

7 tháng 6 2016

xét ddoomhf dư

31 tháng 10 2021

Ta có ax + by = c ; by + cz = a

<=> cz - ax = a - c (1)

mà cz + ax = b (2) 

Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)

=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)

Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\)\(\frac{1}{y+1}=\frac{2b}{a+b+c}\)

=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)