K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

Xét ΔADNΔADN và ΔMBAΔMBA có:

ˆDAN=ˆBMADAN^=BMA^ (AB//DC nên hai góc ở vị trí so le trong bằng nhau)

ˆAND=ˆMABAND^=MAB^ (hai góc ở vị trí so le trong)

⇒ΔADN∼ΔMBA⇒ΔADN∼ΔMBA (g.g)

⇒DNBA=DABM⇒DNBA=DABM (hai cạnh tương ứng)

⇒BM.DN=BA.DA⇒BM.DN=BA.DA mà BA,DABA,DA là hai cạnh của hình bình hành, hình bình hành cố định nên BM.DNBM.DN cố định (đpcm)

mình nghĩ dc câu a thôi

1 tháng 2 2021

Mk ms nghĩ được phần a thôi, phần b để tí nghĩ tiếp :v

(Hình tự vẽ)

Vì ABCD là hình bình hành (gt)

\(\Rightarrow\) AD//BC (t/c hbh)

Mà M \(\in\) BC (d cắt BC tại M)

\(\Rightarrow\) AD//MB

\(\Rightarrow\) \(\widehat{DAN}=\widehat{AMB}\) (2 góc slt, N \(\in\) AM)

Vì ABCD là hbh (gt)

\(\Rightarrow\) \(\widehat{B}=\widehat{D}\) (t/c hbh)

Xét tam giác ADN và tam giác MBA có:

\(\widehat{D}=\widehat{B}\) (cmt)

\(\widehat{DAN}=\widehat{BMA}\) (cmt)

\(\Rightarrow\) \(\Delta\)ADN \(\sim\) \(\Delta\)MBA (gg)

\(\Rightarrow\) \(\dfrac{AD}{BM}=\dfrac{DN}{AB}\) (tỉ số đồng dạng)

\(\Rightarrow\) BM.DN = AB.AD

Mà AB, AD là các cạnh của hbh (gt)

\(\Rightarrow\) AB, AD không đổi

\(\Rightarrow\) AB.AD không đổi

\(\Rightarrow\) MB.DN không đổi (đpcm)

Chúc bn học tốt!

1 tháng 2 2021

Giúp em với :((

 

20 tháng 1 2018

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

20 tháng 1 2018

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.