Cho tam giác ABC vuông tại A .Tia phân giác của góc ABC cắt AC tai D. Từ D kẻ đường thẳng DH vuông goc với BC tai H và DH cắt AB tai K
A, cmr .AD=DH
B, so sánh độ dai AD và DC
C, cm tam giác KBC là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ ADB vuông và ΔBHD vuông có:
BD là cạnh chung
∠ ABD = ∠ HBD ( do BD là tia phân giác của ∠ BAC, H ∈ BC )
Do đó: Δ ADB = Δ BHD( ch - gn )
⇒ AD = DH ( hai cạnh tương ứng )
b) Xét Δ ADK và Δ HDC có
AD=DH ( cmt )
∠ ADK = ∠ HDC ( đối đỉnh )
Vậy: Δ ADK = Δ HDC ( cgv - gn )
⇒ AD = DC ( 2 cạnh tương ứng )
c) Ta có: BK = BA + AK ( do B,A,K thẳng hàng )
BC = BH + HC ( do B,H,C thẳng hàng )
mà BA = BH ( Δ BAD = ΔBHD)
và AK = HC ( Δ ADK = ΔHDC )
⇒ BK = BC ( 1 )
Xét Δ KBC có BK = BC ( cmt ) ( 2 )
Từ ( 1 ) và ( 2 ): ⇒ KBC cân tại B ( định nghĩa tam giác cân )
Xét \(\triangle ABD\) vuông tại \(A\) và \(\triangle HBD\) vuông tại H \(( DH \bot BC)\) ta có :
\(\widehat{ABD}=\widehat{HBD}\) ( tia phân giác của \(\widehat{ABC}\) cắt \(AC\) tại \(D\) )
Chung \(BD\)
\(\Rightarrow\) \(\triangle ABD\) \(=\) \(\triangle HBD\) ( ch - gn )
\(\Rightarrow AB = BH\) ( \(2\) cạnh tương ứng ) (1)
Do \(\begin{cases} \widehat{BAD} = 90^o\\ \widehat{BHD} = 90^0\end{cases}\)
\(\Rightarrow \widehat{KAD} = \widehat{CHD} = 90^o\)
Xét \(\triangle AKD\) vuông tại \(A\) và \(\triangle HCD\) vuông tại \(H\) ta có :
\(\widehat{ADK} = \widehat{HDC}\) ( \(2\) góc đối đỉnh )
\(AD=DH \) ( \(\triangle ABD = \) \(\triangle HBD\) )
\(\Rightarrow\) \(\triangle AKD=\) \(\triangle HCD\) ( cgv - gnk )
\(\Rightarrow AK = CH\) ( \(2\) cạnh tương ứng ) (2)
Từ (1) và (2)
\(\Rightarrow AB+AK = BH+CH\)
\(\Leftrightarrow BK=BC\)
\(\Rightarrow \triangle KBC\) cân tại \(B\)
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: DK=DC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B