cho x,y,z >=-1 và x^3+y^3+z^3=0. chứng minh rằng x+y+z<1
mí pn giúp mk vs nhoa!!!!!!!!!!!
thanhs nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)
\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)
=> đpcm
Áp dụng BĐT cosi ta có:
`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`
`=>3x^2y^2z^2<=3`
`=>x^2y^2z^2<=1`
`=>xyz<=1`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`
`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`
Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`
Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`
Áp dụng BĐT cosi ta có:
`x^6+1+1>=3root{3}{x^6}=3x^2`
`y^6+1+1>=3y^2`
`z^6+1+1>=3z^2`
`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`
`=>9>=3(x^2+y^2+z^2)`
`=>x^2+y^2+z^2<=3`
Kết hợp với `(@@)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`
`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`
Kếp hợp với `(@)`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`
Dấu = xảy ra khi `x=y=z=1`
Lời giải:
BĐT cần chứng mình tương đương với:
$(xy+yz+xz)^2\geq 3(x+y+z)$
$\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z)\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2\geq xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2-xyz(x+y+z)\geq 0$
$\Leftrightarrow 2(xy)^2+2(yz)^2+2(xz)^2-2xyz(x+y+z)\geq 0$
$\Leftrightarrow (xy-yz)^2+(yz-xz)^2+(xz-xy)^2\geq 0$
(luôn đúng với mọi $x,y,z\geq 0$)
Dấu "=" xảy ra khi $x=y=z=1$
ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0
=>a^2+b^2+c^2-ab-ac-bc=0
nhân cả 2 vế với 2 ta đc
2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0
=2x^2+2y^2+2z^2-2xy-2xz-2yz
=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0
<=> (y-x)^2+(y-z)^2+(x-z)^2=0
mà ta lại có (y-x)^2>=0 ; (y-z)^2>=0 ; (x-z)^2>=0
và (y-x)^2+(y-x)^2+(x-z)^2=0
<=>(y-x)^2=0<=>y=x
<=>(y-z)^2=0 <=>y=z
<=>(x-z)^2=0<=>x=z
=>x=y=z
ta có x+y+z=0
=> x+y=-z
=> (x+y)^3=(-z)^3
=> x^3+y^3+3xy(x+y)=-z^3
x^3+y^3+z^3+3xy(x+y)=0
x^3+y^3+z^3-3xyz=0
=> x^3+y^3+z^3=3xyz