K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

(m+n+p)x3=2016

m+n+p=2016:3

m+n+p=672

tk cho mk nhé

1 tháng 2 2017

Ta có :

3m + 3n + 3p = 2016

3 x (m + n + p) = 2016

m + n + p = 2016 : 3

m + n + p = 672

Vậy m + n + p = 672

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:

\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)

Vậy: Khi \(x^2-4x=0\) thì M=0

23 tháng 1 2017

3m + 3n + 3p = 2016

3.(m + n + p) = 2016

m + n + p = 2016 : 3

m + n + p = 672

23 tháng 1 2017

là 672

`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`

`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `

`M(x)= 4x^2-3x+6`

`b,` giá trị của `M(x)` tại `x=0`

`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`

`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`

Giá trị của `M(x)` tại `x=1`

`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`

`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`

`c,` Giá trị của `P(x)` là cái gì bạn nhỉ? 

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)