K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> \(AB^2+AC^2=BC^2\)

=> Tg ABC vuông tại A(định lí Pytago đảo)

b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)

_Cm tương tự: AM //HN(2)

_(1),(2)=> Tứ giác AMHN là hình bình hành

Mà ^MAN=90° => AMHN là hcn

=> AH=MN (đpcm)

c) _Nối D với E, A với E

_Tg AHN =tg AEN(c.g.c) => AE=AH(3)

Mà AH=MN(cmt) => MN=AE(4)

(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)

_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)

=> MN là đường trung bình của tg DEH

=> MN // DE(**); MN= DE/2(6)

_(*),(**)=> D, A, E thẳng hàng(7)

_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE 

=> D đối xứng với E qua A 

30 tháng 12 2021

a: Xét tứ giác AHBD có 

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

2 tháng 12 2017
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH => AH=AD (1) Vì E đối xứng với H qua AC nên AC là đường trung trực của HE => AH=AE (2) Từ (1) và (2) suy ra AD=AE (3) Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o do đó góc DAB+góc BAH+góc HAC+góc CAE=180o => D, A, E thẳng hàng (4) từ (3) và (4) suy ra D và E đx với nhau qua A. b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE => tam giác DHE vuông tại H. c) Tam giác ADB=tam giác AHB (c-c-c) suy ra góc ADB=góc AHB=90o tương tự ta có : góc AEC=90o suy ra BD//CE (cùng vuông góc với DE) nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE => BAEC là hình thang vuông. Đúng 11 Sai 0 Vũ Khánh Linh 12/12/2015 lúc 00:12 Báo cáo sai phạm a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH => AH=AD (1) Vì E đối xứng với H qua AC nên AC là đường trung trực của HE => AH=AE (2) Từ (1) và (2) suy ra AD=AE (3) Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o => D, A, E thẳng hàng (4) Từ (3) và (4) suy ra D và E đx với nhau qua A. b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE => tam giác DHE vuông tại H. c) Tam giác ADB=tam giác AHB (c-c-c) suy ra góc ADB=góc AHB=90o tương tự ta có góc AEC=90o => BD//CE (cùng vuông góc với DE) nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE => BDEC là hình thang vuông. Đúng 1 Sai 0 Đậu Minh Thắng 09/08/2017 lúc 08:34 Báo cáo sai phạm V éo có hình Đúng 0 Sai 0 Vũ Quang Huy 05/08/2016 lúc 11:15 Báo cáo sai phạm cảm ơn bạn Vũ Khánh Linh nhé Đúng 0 Sai 0 Phan Trung Hiếu 03/08/2016 lúc 10:15 Báo cáo sai phạm có thể vẽ hình ko ak? Đúng 0 Sai 0 Thiên Hoàng Minh Trị 28/07/2016 lúc 09:57 o sai phạm có thể vẽ hình ra được không ak?? Đúng 0 Sai 0
11 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)

\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)

Vậy: \(AB=4\sqrt{5}cm\)\(AH=\dfrac{8\sqrt{5}}{3}cm\)

c)

Ta có: D và C đối xứng nhau qua A(gt)

nên A là trung điểm của DC

Xét ΔBDC có 

BA là đường cao ứng với cạnh DC(BA⊥DC)

BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC) 

Do đó: ΔBDC cân tại B(Định lí tam giác cân)

\(\widehat{D}=\widehat{C}\)

Xét ΔADE vuông tại E và ΔACH vuông tại H có 

AD=AC(A là trung điểm của DC)

\(\widehat{D}=\widehat{C}\)(cmt)

Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)

⇒AE=AH(hai cạnh tương ứng)

mà AH là bán kính của đường tròn (A;AH)

nên AE là bán kính của đường tròn (A;AH)

Xét (A;AH) có 

AE là bán kính(cmt)

AE⊥BD tại E(gt)

Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)