K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ

Số lẻ + Số lẻ = Số chẵn

=> n + 2015 là hợp số

31 tháng 1 2017

là hợp số nha!

10 tháng 1 2016

Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:

Với n = 3k +1 thì:

 n^2 + 2006 = (3k+1). (3k+1) +2006

                  = 9.k.k + 3k+3k+1 + 2006

                  = 3.(3.k.k +1+1)+1+2006

                  = 3.(3.k.k +1+1) + 2007 chia hết cho 3

=> Với n = 3k+1 thì n^2 + 2006 là hợp số 

Với n= 3k+2 thì:

(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006

                             =3(3.k.k + 2k +2k)+4+2006

                             =3(3.k.k +2k+2k)+2010 chia hết cho 3

=>Với n = 3k+2 thì n^2 +2006 là hợp số

Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số

(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)

 

                   =

 

 

10 tháng 1 2016

TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007 

3k(3k + 2)  chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3   (1)

TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010

3k(3k + 4)  chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3  (2)

Từ (1) và (2) => n2 + 2006 là hợp số

20 tháng 12 2020

Hế lô Shinichi Kudongaingung

20 tháng 12 2020

ờ, hello

Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3

hay n=3k+1 hoặc n=3k+2(k∈N)

Thay n=3k+1 vào \(n^2+2006\), ta được:

\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)

Thay n=3k+2 vào \(n^2+2006\), ta được:

\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)

Từ (1) và (2) suy ra \(n^2+2006\) là hợp số

7 tháng 1 2016

n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số 

Vì vậy: n2+2015 là hợp số

7 tháng 1 2016

-Vì n là số nguyên tố lớn 3  nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)

Với n =3k+1:

n2+2015=(3k+1)2+2015

             =(3k+1).(3k+1)+2015

             =3k(3k+1)+(3k+1)+2015

             =9k2+3k+3k+1+2015

            =9k2+6k+2016

Ta có:

9k2 chia hết cho 3

6k chia hết cho 3

2016 chia hết cho 3

=> 9k2+6k+2016 chia hết cho 3

Mà 9k2+6k+2016 > 3

=> 9k2+6k+2016 là hợp số 

=>n2+2015 là hợp số (1)

Với n=3k+2:

n2+2015=(3k+2)2+2015

             =(3k+2).(3k+2)+2015

             =3k(3k+2)+2(3k+2)+2015

             =9k2+6k+6k+4+2015

            =9k2+12k+2019

Ta có:

9k2 chia hết cho 3

12k chia hết cho 3

2019 chia hết cho 3

=> 9k2+12k+2019 chia hết cho 3

Mà 9k2+12k+2019 > 3

=> 9k2+12k+2019 là hợp số

=>n2+2015 là hợp số (2)

Từ (1) và (2) suy ra : n2+2015 là hợp số

Vậy n2+2015 là hợp số

nhớ tick ủng hộ mình !

           

1 tháng 2 2016

sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số. 

1 tháng 2 2016

Ta có: n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

TH1: n=3m+1              (m thuộc N)

=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1

=>n2 chia 3 dư 1

TH2: n=3n+2          (k thuộc N)

=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1

=>n2 chia 3 dư 1

Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)

=>n2=3x+1          (x thuộc N)

=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3

Vậy n2+2006 là hợp số

29 tháng 3 2016

n2 là hợp số vì nó chia hết cho n(n>1)

29 tháng 3 2016

mình mới học lớp 5

23 tháng 3 2020

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

23 tháng 3 2020

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

20 tháng 12 2015

ai tick cho tui với à

ai làm chi tiết cho mik đi mik tick người đó 5 li-ke