Tim GTNN cua bieu thuc:
B=|x-2|+|x-6|+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)
\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
\(M=2a^2+a-4=2a^2+3a-2a-3-1\)
\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)
\(M=\left(a-1\right)\left(2a+3\right)-1\)
Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)
\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
B = 5 - 2z2
Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5
Dấu "=" xảy ra khi 2z2 = 0 => z = 0
Vậy Bmax là 5 tại z = 0
C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2
Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3
Vậy Cmin = 2 tại 5 ≥ x ≥ 3
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
Hình như là 13
B = |x - 2| + |x - 6| + 5
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |x - 2| + |x - 6| + 5 = |x - 2| + |6 - x| + 5
B ≥ |x - 2 + 6 - x| + 5 = 4 + 5 = 9
Dấu "=" xảy ra <=> (x - 2)(x - 6) ≥ 0
<=> 2 ≤ x ≤ 6
Vậy gtnn của B là 9 tại 2 ≤ x ≤ 6