Cho A = 1 - 2 + 22 - ... - 22005 + 22006. Chứng tỏ rằng 3A - 1 là 1 lũy thừa của 2
Ai giải được mk tick cho 10 cái. Giúp mk nhoa mọi người ♥
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Thương bằng \(0,25\) tức là \(\dfrac{1}{4}\) .
Vậy tổng số phần bằng nhau là :
\(1 + 4 = 5 \)
Số thứ nhất là :
\(0,75 : 5 = 0,15\)
Số thứ hai là :
\(0,15 . 4 = 0,6\)
Vậy số thứ nhất là \(0,15\)
Số thứ hai là \(0,6\)
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Xét x=-1 =>P(-1)=a.(-1)2-1b+c=a-b+c
Thay a-b+c=0 vào P(1)=>P(-1)=0
=>-1 là nghiệm của đa thức P(x) (điều phải chứng minh)
1) ta có:\(2^{150}\)= (2^3)^50=8^50
\(3^{100}\)= (3^2)^50 = 9^50
vì 8^50 < 9^50 => \(2^{150}\)<\(3^{100}\)
Nếu như đề là A = 1-2+22-...-22005 + 22006 thì làm như vầy nè !
ta có : A = ( ghi lại đề )
=> 2A = 2 -22+23-...+22005-22006+22007
=>2A+A = 3A = 1 - 2 + 22 - ...-22005 + 2 - 22 + 23 -...+22005 - 22006 + 22007
=> 3A = 1 + 22007
=> A = \(\frac{1+2^{2007}}{3}\)
vậy ....
Hinh nhu ban sai de hay sao á !
Đề phải là A=1-2+22-....-22005+22006