Cho ΔABC có trung tuyến AM , D là điểm đối xứng của A qua M.
Chứng minh tứ giác ABDC là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADE có
M là trung điểm của AD
H là trung điểm của AE
Do đó: MH là đường trung bình của ΔADE
Suy ra: MH//DE
hay BC//DE
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
Suy ra: CA=CE
mà CA=BD
nên CE=BD
Xét tứ giác BCDE có DE//BC
nên BCDE là hình thang
mà CE=BD
nên BCDE là hình thang cân
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
A, Xét tứ giác ABCD có
MB=MC=1/2BC(M là trung điểm BC-gt)
MD=MA=1/2AD( M là trung điểm AD-gt)
mà AD cắt BC tại M
->ABCD là hbh
Ta có ABCD là hình bh ( cmt)
mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)
-> ABCD là hcn(Đpcm)
B, Gọi I là giao điêm của AB và EM
Ta có góc BIM=90 độ( do M đối E qua AB-gt)
góc BAC = 90 độ( tam giác ABC vuông tại A-gt)
mà hai góc vị trí đồng vị
-> IM song song AC
Xét tam giác BAC có
M là trung điểm BC(gt)
IM song song AC( cmt)
-> I là trung điểm AB
Ta có
IA=IB=1/2AB( I là trung điểm AB-cmt)
IE=IM=1/2EM(M đối E qua AB-gt)
mà EM cắt AB tại I
-> EAMB là hình bình hành
Mà AB vuông góc EM ( M đối E qua AB-gt)
-> EAMB là hình thoi( đpcm)
Xong rùi nha bn
a: Xét tứ giác ABMD có
O là trung điểm của AM
O là trung điểm của BD
Do đó: ABMD là hình bình hành
a: Xét tứ giác ABFC có
M là trung điểm của BC
M là trung điểm của FA
Do đó: ABFC là hình bình hành
a: Xét tứ giác ABFC có
M là trung điểm của BC
M là trung điểm của FA
Do đó: ABFC là hình bình hành
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật
\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)
\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)
Do đó BIDC là hình thang
Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI
Do đó \(\Delta ABI\) cân tại B
Suy ra BC là trung trực cũng là phân giác
Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)
Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)
Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)
Vậy BIDC là hình thang cân