Cho 3 don thuc \(\frac{5}{3}x^2y^5z^3;\frac{-2}{5}x^3yzt^2;\frac{3}{7}x^{15}y^4z^2\)
Trong do cac bien x, y, z, t khac 0
Chung minh rang trong 3 don thuc da cho co it nhat 1 don thuc gia tri am.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P=-3(x^3.x)(y^2.y^3)
=-3x^4y^5
b, Thay x=-1 , y=2 vào đơn thức P . Ta có :
P=-3.(-1)^4.2^5
P=3.1.32
P=96
a)\(-\left(\frac{-1}{2}xy^2z\right)^2\left(4x^2yz^3\right)\)
\(=-\left(\frac{1}{4}x^2y^4z^2\right)\left(4x^2yz^3\right)\)
\(=\left(\frac{-1}{4}.4\right)\left(x^2x^2\right)\left(y^4y\right)\left(z^2z^3\right)\)
\(=-x^4y^5z^5\) \(\Rightarrow\)Bậc là 14 Hệ số là -1
b)\(\left(\frac{-1}{3}x^2yz^3\right).\left(\frac{-6}{7}xyz^2\right)\)
\(=\left(\frac{-1}{3}.\frac{-6}{7}\right)\left(x^2x\right)\left(yy\right)\left(z^3z^2\right)\)
\(=\frac{2}{7}x^3y^2z^5\) \(\Rightarrow\)Bậc là 10 Hệ số là \(\frac{2}{7}\)
c)\(-3x^2.y^4.\left(\frac{-1}{3}y^4z^5x\right).\left(\frac{-1}{2}zyx^3\right)\)
\(=\left(-3.\frac{-1}{3}.\frac{-1}{3}\right)\left(x^2xx^3\right)\left(y^4y^4y\right)\left(z^5z\right)\)
\(=\frac{-1}{3}x^6y^9z^6\) \(\Rightarrow\)Bậc là 21 Hệ số là \(\frac{-1}{3}\)
d)\(\frac{3}{4}xy^3\left(\frac{-2}{3}x^2y^4\right)^2\)
\(=\frac{3}{4}xy^3\left(\frac{4}{9}x^4y^{16}\right)\)
\(=\left(\frac{3}{4}\cdot\frac{4}{9}\right)\left(xx^4\right)\left(y^3y^{16}\right)\)
\(=\frac{1}{3}x^5y^{19}\)
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)
\(\Rightarrow\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{5z-6y+6x-4z+4y-5x}{4+5+6}=\frac{x-2y+z}{4+5+6}\)
\(\Rightarrow\frac{x}{4}=\frac{-2y}{5}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{12}=\frac{-2y}{5}=\frac{5z}{30}\)
\(\Rightarrow\frac{3x}{12}=\frac{-2y}{5}=\frac{5z}{30}=\frac{3x-2y+5z}{12-5+30}=\frac{96}{37}\)
Mình ko chắc nhé bạn!Nhưng bạn cứ tick cho mình nha!
Lỡ sai thì bạn đừng trách mình nha!
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}=0\)
\(\begin{matrix}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\\\frac{4y-5x}{6}=0\end{matrix}\Rightarrow\)\(\begin{matrix}5z-6y=0\\6x-4z=0\\4y-5x=0\end{matrix}\)\(\Rightarrow\begin{matrix}\frac{y}{5}=\frac{z}{6}\\\frac{x}{4}=\frac{z}{6}\\\frac{x}{4}=\frac{y}{5}\end{matrix}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\begin{matrix}\frac{x}{4}=3\\\frac{y}{5}=3\\\frac{z}{6}=3\end{matrix}\Rightarrow\begin{matrix}x=12\\y=15\\z=18\end{matrix}\)
KL: Vậy ......................
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)( 1 )
\(\frac{y}{3}=\frac{5z}{9}\Rightarrow\frac{y}{15}=\frac{z}{9}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}=\frac{3x+2y-z}{18+30-9}=\frac{-78}{39}=-2\)
\(\Rightarrow x=-12;y=-30;z=-18\)
\(\frac{x}{2}\)= \(\frac{y}{5}\); \(\frac{y}{3}\)= \(\frac{5z}{9}\)và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{x}{6}\)= \(\frac{y}{15}\); \(\frac{y}{15}\)\(\frac{5z}{45}\) và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{5z}{45}\) và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{3x}{18}\)= \(\frac{2y}{30}\)= \(\frac{z}{9}\) và 3x+2y-z=-78
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{18}\)= \(\frac{2y}{30}\)= \(\frac{z}{9}\)= \(\frac{3x+2y-z}{18+30-9}\)= \(\frac{-78}{39}\)= -2
Suy ra: \(\frac{x}{6}\)= -2 \(\Rightarrow\)x= 6.(-2)=-12
\(\frac{y}{15}\)= -2 \(\Rightarrow\)y= 15.(-2)=-30
\(\frac{z}{9}\)= -2 \(\Rightarrow\)z= 9.(-2)=-18
a) \(2x^2y^3.\dfrac{1}{4}xy^3\left(-3\right)xy\)
\(=\left(-3.2.\dfrac{1}{4}\right)x^4y^7\)
\(=\dfrac{-3}{2}x^4y^7\)
\(\Rightarrow Hệ\) số: \(\dfrac{-3}{2}\)
Phần biến: \(x^4y^7\)
b) \(\left(-2x^3y\right)^2.xy^2.\dfrac{1}{5}y^5\)
\(=\dfrac{4}{5}x^7y^9\)
\(\Rightarrow Phần\) biến: \(x^7y^9\)
Hệ số: \(\dfrac{4}{5}.\)
a/ \(2x^2y^3\cdot\dfrac{1}{4}xy^3\left(-3xy\right)\)
\(=\left[2\cdot\dfrac{1}{4}\cdot\left(-3\right)\right]\left(x^2.x.x\right)\left(y^3.y^3.y\right)\)
\(=-\dfrac{3}{2}x^4y^7\)
Phần biến: \(x^4y^7\)
Hệ số: \(-\dfrac{3}{2}\)
b/ \(\left(-2x^3y\right)^2\cdot xy^2\cdot\dfrac{1}{5}y^5=4x^6y^2\cdot xy^2\cdot\dfrac{1}{5}y^5\) \(=4\cdot\dfrac{1}{5}\left(x^6\cdot x\right)\left(y^2\cdot y^2\cdot y^5\right)=\dfrac{4}{5}x^7y^9\)
Phần biến: \(\dfrac{4}{5}\)
Hệ số: \(x^7y^9\)