Tìm x: \(\frac{x+4}{2011}+\frac{x+3}{2012}\)=\(\frac{x+2}{2013}+\frac{x+1}{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\frac{x+1}{2014}+\frac{x+2}{2013}=\frac{x+3}{2012}+\frac{x+4}{2011}\)
\(\frac{x+1}{2014}+1+\frac{x+2}{2013}+1=\frac{x+3}{2012}+1+\frac{x+4}{2011}+1\)
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}=\frac{x+2015}{2012}+\frac{x+2015}{2011}\)
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}-\frac{x+2015}{2012}-\frac{x+2015}{2011}=0\)
\(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)
Vì \(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\ne0\) nên x + 2015 = 0
x = 0 - 2015
x = -2015
\(\frac{x+1}{2014}+\frac{x+2}{2013}=\frac{x+3}{2012}+\frac{x+4}{2011}\)
\(1+\frac{x+1}{2014}+1+\frac{x+2}{2013}=1+\frac{x+3}{2012}+1+\frac{x+4}{2011}\)
\(\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}=\frac{x+3+2012}{2012}+\frac{x+4+2011}{2011}\)
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}=\frac{x+2015}{2012}+\frac{x+2015}{2011}\)
\(\Rightarrow\frac{x+2015}{2014}+\frac{x+2015}{2013}-\frac{x+2015}{2012}-\frac{x+2015}{2011}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)
=> x + 2015 = 0 ( vì 1/2014 + 1/2013 - 1/2012 - 1/2011 khác 0)
=> x = -2015
\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)
\(\Leftrightarrow\left(\frac{x+4}{2011}+1\right)+\left(\frac{x+3}{2012}+1\right)-\left(\frac{x+2}{2013}+1\right)-\left(\frac{x+1}{2014}+1\right)=0\)
\(\Leftrightarrow\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x+2015=0\) (Vì: \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\) )
\(\Leftrightarrow x=-2015\)
\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)
\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)
Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức
\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)
\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
Nên \(x-2010=0\)
\(\Rightarrow\)\(x=2010\)
Vậy \(x=2010\)
Chúc bạn học tốt ~
Bài 1 :
Ta có :
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)
\(+\left(\frac{x+2013}{2011}+1\right)\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)
\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)
\(\Rightarrow x+4024=0\)
\(\Rightarrow x=-4024\)
Bài 2 :
Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)
=> Phương trình trở thành
\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)
\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)
\(\Rightarrow5a^2+3a-8=0\)
\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)
Vì \(a\ge0\Rightarrow a=1\)
\(\Rightarrow x^2+2x+1=1\)
\(x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2,0\right\}\)
\(\Leftrightarrow\frac{x-1}{2011}+1+\frac{x-2}{2012}+1+\frac{x-3}{2013}+1+\frac{x-4}{2014}+1-\left(x+2010\right)=0\)
\(\Leftrightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}+\frac{x+2010}{2013}+\frac{x+2010}{2014}-\left(x+2010\right)=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-1\right)=0\)
\(\Leftrightarrow x=-2010\)
\(\frac{x+4}{2011}+\frac{x+3}{2012}=\frac{x+2}{2013}+\frac{x+1}{2014}\)
\(\frac{x+4}{2011}+1+\frac{x+3}{2012}+1=\frac{x+2}{2013}+1+\frac{x+1}{2014}+1\)
\(\frac{x+4}{2011}+\frac{2011}{2011}+\frac{x+3}{2012}+\frac{2012}{2012}=\frac{x+2}{2013}+\frac{2013}{2013}+\frac{x+1}{2014}+\frac{2014}{2014}\)
\(\frac{x+2015}{2011}+\frac{x+2015}{2012}=\frac{x+2015}{2013}+\frac{x+2015}{2014}\)
\(\frac{x+2015}{2011}+\frac{x+2015}{2012}-\frac{x+2015}{2013}-\frac{x+2015}{2014}=0\)
\(\left(x+2015\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)nên:
x+2015=0
x=-2015