Cho tam giác ABC cân tại A và \(\widehat{A}=100^o\). Trên tia AC lấy D sao cho AD = BC. Tính số đo \(\widehat{CBD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A và góc A = 100 độ. Trên tia AC lấy D sao cho AD = BC. Tính số đo góc CBD.
Vẽ tam giác đều ADM (M,B cùng thuộc 1 nửa mặt phẳng bờ AD)
Tam giác ABC cận tại A góc A => góc B = góc C = 40o
Góc BAM = 40o
Tam giác ABC=tam giác BAM(c.g.c)
=> AC=BM (2 cạnh tương ứng)
Lại có AB=AC
=> BM=AC
Dễ dàng chứng minh
Tam giác ABD=Tam giác BMD(c.c.c)
Suy ra góc ADB = góc MDB = \(\frac{60^0}{2}\)= 30o
Lại có góc CBD = góc BCA -góc CDB = 40 - 30 = 10o
Vẽ tam giác đều ADM (M,B thuộc cùng một nửa mặt phẳng bờ AD)
\(\Delta ABC\)cân tại A, \(\widehat{A}\)= 100o => \(\widehat{B}=\widehat{C}=40^o\)
\(\widehat{BAM}\)= 100o - 60o = 40o
\(\widehat{ABC}\)và \(\widehat{BAM}\)( = 40o) ; AB chung
\(\Delta ABC=\Delta BAM\left(c-g-c\right)\)
=> AC = BM
Có AC = AB (gt)
=> BM = BA
\(\Delta ABD=\Delta MBD\left(c-c-c\right)\)
=> \(\widehat{D_1}=\widehat{D_2}=\frac{60^o}{2}=30^o\)
Xét \(\Delta CBD\)có \(\widehat{BCA}\)là góc ngoài
=> \(\widehat{BCA}=\widehat{CBD}+\widehat{D_1}\)
=> \(\widehat{CBD}=40^o-30^o=10^o\)
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)