K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Vẽ tam giác đều ADM (M,B cùng thuộc 1 nửa mặt phẳng bờ AD)

Tam giác ABC cận tại A góc A  => góc B = góc C =  40o

Góc BAM = 40o

Tam giác ABC=tam giác BAM(c.g.c)

=> AC=BM (2 cạnh tương ứng)

Lại có AB=AC

=> BM=AC

Dễ dàng chứng minh 

Tam giác ABD=Tam giác BMD(c.c.c)

Suy ra góc ADB = góc MDB =  \(\frac{60^0}{2}\)= 30o

Lại có góc CBD = góc BCA -góc CDB = 40 - 30 = 10o
 

10 tháng 6 2017

A B C D M 1 2

Vẽ tam giác đều ADM (M,B thuộc cùng một nửa mặt phẳng bờ AD)

\(\Delta ABC\)cân tại A, \(\widehat{A}\)= 100o => \(\widehat{B}=\widehat{C}=40^o\)

\(\widehat{BAM}\)= 100o - 60o = 40o

\(\widehat{ABC}\)và \(\widehat{BAM}\)( = 40o) ; AB chung

\(\Delta ABC=\Delta BAM\left(c-g-c\right)\)

=> AC = BM 

Có AC = AB (gt)

=> BM = BA

\(\Delta ABD=\Delta MBD\left(c-c-c\right)\)

=> \(\widehat{D_1}=\widehat{D_2}=\frac{60^o}{2}=30^o\)

Xét \(\Delta CBD\)có \(\widehat{BCA}\)là góc ngoài

=> \(\widehat{BCA}=\widehat{CBD}+\widehat{D_1}\)

=> \(\widehat{CBD}=40^o-30^o=10^o\)

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)