Cho (x – y):( x + y): xy = 1:7:24 (x,y khác 0). Tìm x, y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x−y1=x+y7=(x−y)+(x+y)1+7=2x8=x4x−y1=x+y7=(x−y)+(x+y)1+7=2x8=x4
xy=xy24⇔6x24=xy24xy=xy24⇔6x24=xy24
⇒6x=xy⇒6x=xy
⇒y=6⇒y=6
x−61=x+67x−61=x+67
⇔7.(x−6)=x+6⇔7.(x−6)=x+6
⇔7x−42=x+6⇔7x−42=x+6
⇔7x−x=6+42⇔7x−x=6+42
⇔6x=48⇔6x=48
⇒x=8⇒x=8
Vậy x=8;y=6
Ta có: \(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{\left(x-y\right)+\left(x+y\right)}{1+7}=\dfrac{2x}{8}=\dfrac{x}{4}\)
\(\dfrac{x}{y}=\dfrac{xy}{24}\Leftrightarrow\dfrac{6x}{24}=\dfrac{xy}{24}\)
\(\Rightarrow6x=xy\)
\(\Rightarrow y=6\)
\(\dfrac{x-6}{1}=\dfrac{x+6}{7}\)
\(\Leftrightarrow7.\left(x-6\right)=x+6\)
\(\Leftrightarrow7x-42=x+6\)
\(\Leftrightarrow7x-x=6+42\)
\(\Leftrightarrow6x=48\)
\(\Rightarrow x=8\)
Vậy \(x=8;y=6.\)
Đặt : \(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=k\\x+y=7k\\xy=24k\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\right.\)
Từ (1) => x = y + k
Thay x = y + k vào (2)
=> 2y = 6k => y = 3k
Có : x = y + k ; y = 3k
=> xy = (y + k).3k = 24k
<=> y + k = 8
Mà y = 3k
=> 4k = 8
=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x-y=2\\x+y=14\\xy=48\end{matrix}\right.\)(tới đây lập luận , thế qua thế lại là ra)
=> \(\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{xy}{24}=\frac{x-y}{1}=\frac{x+y}{7}=\frac{\left(x-y\right)+\left(x+y\right)}{1+7}=\frac{\left(x-y\right)-\left(x+y\right)}{1-7}\)=> \(\frac{xy}{24}=\frac{x}{4}=\frac{y}{3}\)
\(\frac{xy}{24}=\frac{x}{4}\)=>\(\frac{x}{4}.\frac{y}{6}=\frac{x}{4}\)=> \(\frac{y}{6}=\frac{x}{4}:\frac{x}{4}=1\) ( do x khác 0) => y = 6
\(\frac{xy}{24}=\frac{y}{3}\Rightarrow\frac{x}{8}.\frac{y}{3}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{3}:\frac{y}{3}=1\) ( do y khác 0) => x = 8
Vậy...
\(P=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{\left(x+y\right)\left(x^2+y^2-xy\right)}{x^3y^3}=\dfrac{x^2y^2\left(x+y\right)}{x^3y^3}=\dfrac{x+y}{xy}=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+y^2-xy}=\dfrac{4\left(x^2+y^2-xy\right)-3\left(x^2+y^2-2xy\right)}{x^2+y^2-xy}\)
\(=4-\dfrac{3\left(x-y\right)^2}{x^2+y^2-xy}\le4\)
\(P_{max}=4\) khi \(x=y=\dfrac{1}{2}\)
Ta có : \(\frac{x-y}{1}=\frac{x+y}{7}=\frac{\left(x-y\right)+\left(x+y\right)}{1+7}=\frac{2x}{8}=\frac{x}{4}\)
\(\frac{x}{4}=\frac{xy}{24}\Leftrightarrow\frac{6x}{24}=\frac{xy}{24}\) => 6x = xy => y = 6
\(\frac{x-6}{1}=\frac{x+6}{7}\)
<=> 7(x - 6) = x + 6
<=> 7x - 42 = x + 6
<=> 7x - x = 6 + 42
<=> 6x = 48
=> x = 8
Vậy x = 8 ; y = 6