K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét tứ giác BCEF có 

\(\widehat{BEC}=\widehat{BFC}\left(=90^0\right)\)

mà hai góc này cùng nhìn cạnh BC dưới những góc bằng nhau

nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(Đpcm)

25 tháng 1 2022

Xét tứ giác AFHE có:

Góc HEA + Góc HFA = 90 độ + 90 độ = 180 độ.

Mà 2 góc này ở vị trí đối nhau.

=> Tứ giác AFHE nội tiếp đường tròn (dhnb).

 

23 tháng 4 2019

bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????

2 tháng 5 2019

3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)

Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE

4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)2016-04-23_193155

Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE

⇒DKE = DEK => ΔDEK cân tại D => DE = DK

Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

14 tháng 4 2022

a) Xét tam giác ABC có

BE là đường cao của AC tại E => góc BEA = góc BEC =90

CF là đường cao của AB tại F => góc CFA = góc CFB =90 

AD là đường cao của BC tại D => góc ADB = góc ADC

xét tứ giác BFEC có 

góc BFC = góc BEC = 90 

mà F và E là 2 đỉnh đối => tứ giác nội tiếp (DHNB)

=> góc EFC = góc EBC (2 góc nội tiếp chắn EC)

=> góc FEH = góc HCB ( 2 góc nội tiếp chắn BF)

Xét (O) có

góc MNC = góc EBC (2 góc nội tiếp chắn MC )

=>góc EFC = góc MNC 

mà 2 góc ở vị trí đồng vị => song song (tc)

b) Xét tứ giác BFHD có 

góc BDA + góc CFB =180 

mà F và D là 2 đỉnh kề 

=> BFHD là tứ giác nội tiếp (DHNB)

=> góc CFD= góc EBC (góc nội tiếp chắn HD)

=> Góc EFC = góc CFD (= góc EBC)

=> FC là phân giác của góc DFE

=> FH là phân giác của góc DFE (H thuộc DC)

=Xét tứ giác CDHE có 

góc ADC + góc CEB =180 

mà D và E là 2 đỉnh kề 

=> tứ giác CDHE nội tiếp 

=> góc HCB = góc HED(2 góc nội tiếp chắn HD)

=> góc FEH = góc HEB (= góc HCD) 

=> HE là phan giác góc FED

xét tma giác FED có

FH là phân giác góc EFD 

EH lag phân giác góc FED 

mà FH giao với EH tại H 

=> H là giao điểm 3 đường phân giác của tam giác EFD 

=> H là tâm đường tròn nội tiếp tam giác EFD 

c) gọi giao điểm của đường vuông góc kẻ từ A -> EF cắt EF tại K và cắt BE tại T và cắt (O) tại I 

vì TK vuông góc với EF tại K 

=> góc TKE = 90 

xét tam giác TKE và tam giác TEA có

góc T chung 

góc TKE = góc TEA (=90)

=> đồng dạng(g-g) => góc TEK = góc TAE 

Xét tứ giác nội tiếp BFEC có

 Góc TEK = góc FCB ( 2 góc nội tiếp chắn BF;T thuộc BE)

Xét (O) có

Góc TAE = góc CBI ( 2 góc nội tiếp chắn IC)

=> góc FCB = góc IBC 

mà 2 góc ở vị trí so le trong => BI // CF (tc)

mà CF vuông góc với AB 

=> IB vuông góc với AB 

=> góc IBA=90 (tc)

xét (O)

=> góc IBA=1/2 số đo cung AI (góc nội tiếp chắn AI)=> số đo cũng AI = 180

=> AI là đường kính của đường tròn tâm (O)

=> A,I,O thẳng hàng 

mà AI vuông góc với EF => đường vuông góc với EF sẽ luông đi qua điểm O 

mà O cố định => đường vuông góc với EF sẽ luông đi qua điểm O cố định

 

 

18 tháng 3 2021

B C A H E Q F P D

a/

Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')

=> B,F,E,C cùng nawmg trên một đường tròn

b/

Xét đường tròn (O) ta có

sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)

Xét đường tròn (O') ta có

sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau

c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)

Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)

Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)

a: góc BFC=góc BEC=90 độ

=>BCEF nội tiếp

b: Xét ΔKFB và ΔKCE có

góc KFB=góc KCE
góc K chung

=>ΔKFB đồng dạng với ΔKCE

=>KF/KC=KB/KE

=>KF*KE=KB*KC

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: BCEF là tứ giác nội tiếp(cmt)

nên \(\widehat{EBC}=\widehat{EFC}\)(hai góc cùng nhìn cạnh EC)

hay \(\widehat{MBC}=\widehat{HFE}\)(1)

Xét (O) có 

\(\widehat{MBC}\) là góc nội tiếp chắn cung CM

\(\widehat{MNC}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{MBC}=\widehat{MNC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBC}=\widehat{HNM}\)(2)

Từ (1) và (2) suy ra \(\widehat{HFE}=\widehat{HNM}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên FE//MN(Dấu hiệu nhận biết hai đường thẳng song song)

19 tháng 5 2021

Làm giúp mình luôn câu d với ạ