K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2022

\(A=11^{15}+11^{14}+11^{13}=11^{13}\left(11^2+11+1\right)\\ =11^{13}\left(121+11+1\right)=133.11^{13}\)

Vì \(133⋮7\\ \Rightarrow33.11^{13}⋮7\\ \Rightarrow A⋮7\)

\(A=27^5+9^7+3^{12}=\left(3^3\right)^5+\left(3^2\right)^7+3^{12}\\ =3^{15}+3^{14}+3^{12}=3^{12}\left(3^3+3^2+1\right)\\ =37.3^{12}⋮37\Rightarrow A⋮37\)

\(A=2^{100}+2^{101}+2^{102}=2^{100}\left(1+2+2^2\right)\\ =7.2^{100}⋮7\Rightarrow A⋮7\)

23 tháng 10 2022

Sẽ gầy 🤣🤣🤣

 

15 tháng 3 2016

nhìu quá ít thôi

15 tháng 3 2016

giải giúp mik đi mà ! huhuh

15 tháng 3 2016

a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)

Ta có: 55 chia hết cho 11 

Nên \(7^4.55\)chia hết cho 11

Hay \(7^6+7^5-7^4\)chia hết cho 11

Câu b,c làm tương tự

20 tháng 9 2015

Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11

20 tháng 9 2015

nhìu thế giảm tải dc ko                  

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

20 tháng 8 2017

giải ra giùm mình nhé 

ai trả lời được mình k cho

25 tháng 8 2016

a/ 8^7-2^18=1835008 chia hết cho 14=131072                            

b/10^6-5^7=921875 chia hết cho 59=15625

7^6+7^5-7^4=132055  hết cho 55=2401

10 tháng 9 2016

a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14

14 chia hết cho 14 => ĐPCM

b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59

59 chia hết 59 => ĐPCM

c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55

55 cha hết 5 => ĐPCM

d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33

33 chia hết 33 => ĐPCM

e và f chịu

g thì tính chữ số tận cùn của tổng đó

h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7

7 chia hết cho 7 => nó là 1 số tự nhiên

i chịu