K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2022

A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3.7}\) - \(\dfrac{1}{7.11}\) - \(\dfrac{1}{11.15}\) - \(\dfrac{1}{15.19}\) - \(\dfrac{1}{19.23}\) - \(\dfrac{1}{23.27}\)

A = \(\dfrac{1}{2}\) - ( \(\dfrac{1}{3.7}\) + \(\dfrac{1}{7.11}\) + \(\dfrac{1}{11.15}\) + \(\dfrac{1}{15.19}\) + \(\dfrac{1}{19.23}\) + \(\dfrac{1}{23.27}\))

A = \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\).( \(\dfrac{4}{3.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{4}{11.15}\) + \(\dfrac{4}{15.19}\) + \(\dfrac{4}{19.23}\) + \(\dfrac{4}{23.27}\))

A = \(\dfrac{1}{2}\) -\(\dfrac{1}{4}\) .( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) -  \(\dfrac{1}{11}\)\(\dfrac{1}{11}\)\(\dfrac{1}{15}\) +\(\dfrac{1}{15}\)-\(\dfrac{1}{19}\) +\(\dfrac{1}{19}\) - \(\dfrac{1}{23}\) + \(\dfrac{1}{23}\) - \(\dfrac{1}{27}\))

A =  \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\). ( \(\dfrac{1}{3}\) - \(\dfrac{1}{27}\))

A = \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{8}{27}\)

A = \(\dfrac{1}{2}\) - \(\dfrac{2}{27}\)

A = \(\dfrac{23}{54}\)

28 tháng 7 2020

Ta có : \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)

\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}=\frac{1}{2}-\frac{2}{27}=\frac{23}{54}\)

28 tháng 7 2020

Trả lời:

\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)

\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)

\(=\frac{1}{2}-\frac{2}{27}\)

\(=\frac{23}{54}\)

Học tốt 

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks

1 tháng 7 2015

\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-...-\frac{1}{23.27}=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{23.27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)

Y
24 tháng 6 2019

Chắc là đề thiếu: \(y=\frac{1}{2}-\frac{1}{3\cdot7}-\frac{1}{7\cdot11}-\frac{1}{11\cdot15}-\frac{1}{15\cdot19}-\frac{1}{19\cdot23}-\frac{1}{23\cdot27}\)

\(y=\frac{1}{2}-\left(\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+...+\frac{1}{23\cdot27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{23\cdot27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)

25 tháng 6 2019

thank bn haha

7 tháng 8 2018

\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\)

= \(4.\left(\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\right)\)

=\(1.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{23.27}\right)\)

= \(1.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

=\(1.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

=\(1.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)

= \(1.\dfrac{8}{27}\)

= \(\dfrac{8}{27}\)

9 tháng 7 2017

a) Mình ko ghi lại đề nhé!

\(\frac{1}{2}\) - ( \(\frac{1}{3.7}\) + \(\frac{1}{7.11}\) + ... + \(\frac{1}{23.27}\) )

\(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) -  \(\frac{1}{7}\) + \(\frac{1}{7}\) - .... - \(\frac{1}{27}\) )

\(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{27}\) )

\(\frac{1}{2}\) - \(\frac{1}{4}\) . \(\frac{8}{27}\)

\(\frac{1}{2}\) - \(\frac{2}{27}\) = \(\frac{23}{54}\)

b) ..............................................................................

\(\frac{1}{5}\)  . ( \(\frac{5}{5.10}\) - \(\frac{5}{10.15}\) - ... - \(\frac{5}{95.100}\) )

\(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - ... - \(\frac{1}{100}\) )

\(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{100}\) )

\(\frac{1}{5}\) . \(\frac{19}{100}\)

\(\frac{19}{500}\) 

k mình nha! Chúc bạn học tốt và được nhiều k!

15 tháng 7 2017

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)

\(=\frac{8}{27}\)

15 tháng 7 2017

Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}\)

\(=\frac{8}{27}\)

27 tháng 5 2019

a)1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72+89/90

=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90

=9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)

=9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]

=9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)

=9 – (1 – 1/10) = 9 – 9/10 = 81/10

b)4/3.7 + 4/7.11 + 4/11.15 + 4/15.19 + 4/19.23 + 4/23.27

=4.(4/3.7 + 4/7.11 + ........+ 4/23.27 )

=1.( 1/3.7 + 1/7.11 + ......+ 1/23.27 )

=1.(1/3 - 1/7 + 1/7 - 1/11 +............ + 1/23 - 1/27 )

=1.(1/3 - 1/27 )

=1.(9/27 - 1/27)

=1.8/27

=8/27

c)1/10+1/40+1/88+1/154+1/138+1/340

=1/2.5 + 1/5.8 + 1/11.8 + 1/11.14 + 1/14.17 + 1/17.20

=1/3. (3/2.5  + 3/5.8 + 3/8.11 + 3/11.14 + 3/14.17 + 3/17.20 )

=1/3. ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20 )

=1/3. ( 1/2 - 1/20 )

=1/3. 9/20

=3/20

P/S: CHÚC HOK TỐT !

5 tháng 11 2017

\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\dfrac{8}{27}\)

\(=\dfrac{11}{54}\)

5 tháng 11 2017

Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx

Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\)\(2^{-1}< 2^{51}\) là điều quá rõ rồi

Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx

Chúc bn học tốt banhbanhbanhbanhbanh