Cho tam giác ABC,kẻ AH vuông góc với BC.biết AB=5cm,BH=3cm,BC=8cm.Tính độ dài các cạnh AH,HC,AC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bé tự vẽ nhá.
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :
AH2 +BH2 =AB2
AH2 = AB2 - BH2
AH2 = 52 - 32
=>. AH2 = 16
AH = 4 (cm)
Theo đề, có : AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC = 5 (cm)
Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :
AH2 + HC2 = AC2
42 + 52 = AC2
=> AC2 = 41
AC = \(\sqrt{41}\)
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)\(\sqrt{41}\)
Mà AC >0 =>AC=\(\sqrt{41}\)cm
Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm
- Ta có tam giác ABC vuông tại H
Áp dụng định lí Pi-ta-go có:
\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)
Tương tự ta có:...(bn tự làm)
Tam giác AHC vuông tại H
=> cũng như trên
Tự vẽ nhé
Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:
AH\(^2\)+ BH\(^2\)= AB\(^2\)
AH\(^2\)= \(AB^2-BH^2\)
\(AH^2=5^2-3^2\)
\(=>AH^2=16\)
\(AH=4cm\)
Theo đề, ta có: AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC=5 cm
Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:
\(AH^2+HC^2=AC^2\)
\(4^2+5^2=AC^2\)
=> \(AC^2=41\)
=> \(AC=\sqrt{41}\)
Hình: tự vẽ (nha anh lp trưởng) =.=
a, \(\Delta AHC\)có: \(\widehat{HAC}=180^o-\left(\widehat{AHC}+\widehat{C}\right)=180^o-120^o=60^o\)
b, *Áp dụng định lí Pytago vào \(\Delta ABH\),có:
\(AH^2=AB^2-BH^2\)
\(\Rightarrow AH^2=25-9=16\)
\(\Rightarrow AH=4\)(cm)
*Ta có: \(HC=BC-BH=10-3=7\)(cm)
* Theo đ/lí Pytago, có: \(AH^2+HC^2=AC^2\)
\(\Rightarrow16+49=AC^2\)
\(\Rightarrow AC^2=65\)
\(\Rightarrow AC=\sqrt{65}\)(cm)
Bạn tham khảo link này nha;
https://olm.vn/hoi-dap/detail/242922769259.html
Chúc bạn học tốt
Forever
hình bạn tự vẽ nha
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :
AH2 +BH2 =AB2
AH2 = AB2 - BH2
AH2 = 52 - 32
=>. AH2 = 16
AH = 4 (cm)
Theo đề, có : AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC = 5 (cm)
Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :
AH2 + HC2 = AC2
42 + 52 = AC2
=> AC2 = 41
AC = √41
XÉT \(\Delta ABH\)VUÔNG TẠI H
CÓ\(AB^2=AH^2+HB^2\)( ĐL PY-TA-GO)
THAY\(5^2=AH^2+3^2\)
\(25=AH^2+9\)
\(AH^2=25-9\)
\(AH^2=16\)
\(AH=\sqrt{16}=4\left(cm\right)\)
TA CÓ \(BH+HC=BC\)
\(3+HC=8\)
\(HC=5\left(cm\right)\)
xét \(\Delta AHC\)VUÔNG TẠI H
CÓ \(AC^2=AH^2+HC^2\)(ĐỊNH LÝ PYTAGO)
\(AC^2=4^2+5^2\)
\(AC^2=16+25\)
\(AC^2=41\)
\(AC=\sqrt{41}\)
cho tam giác ABC , kẻ AH vuông góc với BC . biết AB=5cm , BH=8cm . tính độ dài các cạnh AH , HC , AC
Bạn tham khảo nhé!
https://olm.vn/hoi-dap/detail/33236210534.html
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Bạn đã hk định lí Pi-ta-go chưa ? Nếu hk rồi thì sau đây là cách giải:
tam giác ABH vuông tại H. Áp dụng định lí Pi-ta-go ta có:
AH2=AB2-BH2=52-32=16 => AH=4
Ta có: HC=BC-BH=8-3=5 =>HC=5
Tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:
AC2=AH2+HC2=42+52=41
Nếu có sai ở đâu thì sửa đi nhé !