cho hệ phương trình\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
1.chứng minh rằng hệ có nghiệm duy nhất (x,y) thì M(x,y) luôn thuộc 1 đường thẳng cố định khi m thay đổi
2.xác định m để M thuộc góc phần tư thứ nhất
3.xác định m để M thuộc (O,\(\sqrt{5}\))
Mọi việc quy về giải hệ.
Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).
Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)
Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).
Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).
Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).
-----
Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).
Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).
Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.