K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

a) \(\dfrac{40}{27}\)

b) \(\dfrac{196}{45}\)

c) \(\dfrac{56}{9}\)

d) 1296

19 tháng 5 2021

a) \sqrt{\dfrac{25}{81} \cdot \dfrac{16}{49} \cdot \dfrac{196}{9}}

=\sqrt{\dfrac{25}{81}} \cdot \sqrt{\dfrac{16}{49}} \cdot \sqrt{\dfrac{196}{9}}

=\sqrt{\left(\dfrac{5}{9}\right)^{2}} \cdot \sqrt{\left(\dfrac{4}{7}\right)^{2}} \cdot \sqrt{\left(\dfrac{14}{3}\right)^{2}}

=\dfrac{5}{9} \cdot \dfrac{4}{7} \cdot \dfrac{14}{3}=\dfrac{40}{27}.

b) \sqrt{3 \dfrac{1}{16} \cdot 2 \dfrac{14}{25} \cdot 2 \dfrac{34}{81}}

=\sqrt{\dfrac{49}{16} \cdot \dfrac{64}{25} \cdot \dfrac{196}{81}}

=\sqrt{\dfrac{49}{16}} \cdot \sqrt{\dfrac{64}{25}} \cdot \sqrt{\dfrac{196}{81}}

=\sqrt{\left(\dfrac{7}{4}\right)^{2}} \cdot \sqrt{\left(\dfrac{8}{5}\right)^{2}} \cdot \sqrt{\left(\dfrac{14}{9}\right)^{2}}

=\dfrac{7}{4} \cdot \dfrac{8}{5} \cdot \dfrac{14}{9}=\dfrac{196}{45}.

c) \dfrac{\sqrt{640} \cdot \sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.343}{567}}

=\sqrt{\dfrac{64.49 .7}{81.7}}=\sqrt{\dfrac{64.49}{81}}

=\dfrac{\sqrt{64} \cdot \sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}

=\dfrac{56}{9}.

d) \sqrt{21,6} \cdot \sqrt{810} \cdot \sqrt{11^{2}-5^{2}}

=\sqrt{21,6.810 \cdot\left(11^{2}-5^{2}\right)}

=\sqrt{216.81 .(11+5)(11-5)}

=\sqrt{36.6 .9^{2} \cdot 4^{2} .6}

=\sqrt{36^{2} .9^{2} \cdot 4^{2}}=36.9 .4=1296.

15 tháng 7 2017

a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)

b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)

c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)

d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)

TRẢ LỜI :

Để học tốt Toán 9 | Giải bài tập Toán 9

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}=3\sqrt{5}\)

Để học tốt Toán 9 | Giải bài tập Toán 9

c) √20 - √45 + 3√18 + √72

= √4.5 - √9.5 + 3√9.2 + √36.2

= 2√5 - 3√5 + 9√2 + 6√2

= -√5 + 15√2

Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 5 2021

a) 3√5                                           b) 9√2 / 2

c) -√5 + 15√2                                d)
3,4√2

 

24 tháng 4 2021

\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)

\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)

\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)

\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)

\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)

24 tháng 4 2021

+ Ta có: 

510=5.1010.10=510(10)2=51010

=5.105.2=102.

+ Ta có:

525=5.525.5=552.(5.5)=552(5)2

=552.5=52.

+ Ta có:

1320=1.20320.20=203.(20.20)=203.(20)2

              =203.20=22.560=2560=252.30=530.

+ Ta có:

(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2

                    =2.2+225.2=2(2+2)5.2=2+25.

+ Ta có:

 y+byby=(y+by).yby.y=yy+by.yb.(y)2

                    =yy+b(y)2by=yy+byby

                    =y(y+b)b.y=y+bb.

Cách khác:

y+byby=(y)2+byby

Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com

#Ye Chi-Lien

25 tháng 4 2021

LG a

12√48−2√75−√33√11+5√1131248−275−3311+5113;

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √ab=√a√bab=ab,   với a≥0, b>0a≥0, b>0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

+ A√B=A√BBAB=ABB,   với B>0B>0.

Lời giải chi tiết:

Ta có: 

12√48−2√75−√33√11+5√1131248−275−3311+5113

=12√16.3−2√25.3−√3.11√11+5√1.3+13=1216.3−225.3−3.1111+51.3+13

=12√42.3−2√52.3−√3.√11√11+5√43=1242.3−252.3−3.1111+543

=12.4√3−2.5√3−√3+5√4√3=12.43−2.53−3+543

=42√3−10√3−√3+5√4.√3√3.√3=423−103−3+54.33.3 

=2√3−10√3−√3+52√33=23−103−3+5233 

=2√3−10√3−√3+10√33=23−103−3+1033 

=(2−10−1+103)√3=(2−10−1+103)3

=−173√3=−1733.

LG b

√150+√1,6.√60+4,5.√223−√6;150+1,6.60+4,5.223−6;

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √ab=√a√bab=ab,   với a≥0, b>0a≥0, b>0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

+ A√B=A√BBAB=ABB,   với B>0B>0.

Lời giải chi tiết:

Ta có: 

 √150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6

=√25.6+√1,6.60+4,5.√2.3+23−√6=25.6+1,6.60+4,5.2.3+23−6

=√52.6+√1,6.(6.10)+4,5√83−√6=52.6+1,6.(6.10)+4,583−6

=5√6+√(1,6.10).6+4,5√8√3−√6=56+(1,6.10).6+4,583−6

=5√6+√16.6+4,5√8.√33−√6=56+16.6+4,58.33−6

=5√6+√42.6+4,5√8.33−√6=56+42.6+4,58.33−6

=5√6+4√6+4,5.√4.2.33−√6=56+46+4,5.4.2.33−6

=5√6+4√6+4,5.√22.63−√6=56+46+4,5.22.63−6

=5√6+4√6+4,5.2√63−√6=56+46+4,5.263−6

=5√6+4√6+9√63−√6=56+46+963−6

=5√6+4√6+3√6−√6=56+46+36−6

=(5+4+3−1)√6=11√6.=(5+4+3−1)6=116.

Cách 2: Ta biến đổi từng hạng tử rồi thay vào biểu thức ban đầu:

+ √150=√25.6=5√6150=25.6=56

+ √1,6.60=√1,6.(10.6)=√(1,6.10).6=√16.61,6.60=1,6.(10.6)=(1,6.10).6=16.6

=4√6=46

+ 4,5.√223=4,5.√2.3+23=4,5.√83=4,5√8.334,5.223=4,5.2.3+23=4,5.83=4,58.33

=4,5.√4.2.33=4,5.2.√63=9.√63=3√6.=4,5.4.2.33=4,5.2.63=9.63=36.

Do đó:

√150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6

=5√6+4√6+3√6−√6=56+46+36−6

=(5+4+3−1)√6=11√6=(5+4+3−1)6=116

LG c

(√28−2√3+√7)√7+√84;(28−23+7)7+84;

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √ab=√a√bab=ab,   với a≥0, b>0a≥0, b>0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

+ A√B=A√BBAB=ABB,   với B>0B>0.

Lời giải chi tiết:

Ta có:

 =(√28−2√3+√7)√7+√84=(28−23+7)7+84

=(√4.7−2√3+√7)√7+√4.21=(4.7−23+7)7+4.21

=(√22.7−2√3+√7)√7+√22.21=(22.7−23+7)7+22.21

=(2√7−2√3+√7)√7+2√21=(27−23+7)7+221

=2√7.√7−2√3.√7+√7.√7+2√21=27.7−23.7+7.7+221

=2.(√7)2−2√3.7+(√7)2+2√21=2.(7)2−23.7+(7)2+221

=2.7−2√21+7+2√21=2.7−221+7+221

=14−2√21+7+2√21=14−221+7+221 

=14+7=21=14+7=21.

LG d

(√6+√5)2−√120.(6+5)2−120.

Phương pháp giải:

+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.

+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:  

           √A2.B=A√BA2.B=AB,  nếu A≥0, B≥0A≥0, B≥0.

           √A2.B=−A√BA2.B=−AB,  nếu A<0, B≥0A<0, B≥0.

+ √a.√b=√aba.b=ab,  với a, b≥0a, b≥0.

Lời giải chi tiết:

Ta có:

(√6+√5)2−√120(6+5)2−120

=(√6)2+2.√6.√5+(√5)2−√4.30=(6)2+2.6.5+(5)2−4.30

=6+2√6.5+5−2√30=6+26.5+5−230

=6+2√30+5−2√30=6+5=11.=6+230+5−230=6+5=11.

23 tháng 5 2021

-17√3/3                                                  b) 11√6 

c) 21                                                            d) 11                             C4:

Để học tốt Toán 9 | Giải bài tập Toán 9

 

 

 

 

21 tháng 6 2021

a) \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{120}{121}.\dfrac{143}{144}\)

\(\dfrac{1.3.2.4.3.5.4.6....10.12.11.13}{2^2.3^2.4^2.5^2...11^2.12^2}\)

\(\dfrac{1.2.12.13}{2^2.12^2}=\dfrac{13}{2.12}=\dfrac{13}{24}\)

b) \(B=\dfrac{5}{9}.\dfrac{21}{25}.\dfrac{45}{49}.\dfrac{77}{81}....\dfrac{357}{361}.\dfrac{437}{441}\)

\(\dfrac{1.5.3.7.5.9.7.11.....17.21.19.23}{3^2.5^2.7^2....19^2.21^2}=\dfrac{1.3.21.23}{3^2.21^2}\)

\(\dfrac{23}{3.21}=\dfrac{23}{63}\)

28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

a) (√8 - 3√2 + √10)√2 - √5

= (√22.2 - 3√2 + √5.2)√2 - √5

= (2√2 - 3√2 + √5.√2)√2 - √5

= (2 - 3 + √5)√2.√2 - √5

= (-1 + √5).2 - √5

= -2 + 2√5 - √5

= -2 + √5

b) 0,2√((-10)2.3) + 2√(√3 - √52)

= 0,2.10√3 + 2|√3 - √5|

= 2√3 + 2(√5 - √3)

= 0,2.10.√3 + 2|√3 - √5|

= 2√3 + 2(√5 - √3)

= 2√3 + 2√5 - 2√3

 

= 2√5

Giải phần c và d

 Giải Toán 9: Bài 71 trang 40 SGK Toán 9 tập 1 | Giải bài tập Toán 9

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}

=3 \sqrt{-a}-|3+2 a|

Thay a=-9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6.

b) Điều kiện: m \neq 2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}

=1+\dfrac{3 m|m-2|}{m-2}

+) m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m(1)

+) m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m(2)

Với m=1,5<2. Thay vào biểu thức (2) ta có: 1-3 m=1-3.1,5=-3,5

Vậy giá trị biểu thức tại m=1,5 là -3,5.

c) \sqrt{1-10 a+25 a^{2}}-4a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a

=\sqrt{(1-5a)^{2}}-4 a

=|1-5 a|-4 a

+) Với a <\dfrac{1}{5}, ta được: 1-5a-4 a=1-9a(3)

+) Với a \ge \dfrac{1}{5}, ta được: 5 a-1-4 a=a-1(4)

Vì a=\sqrt{2}>\dfrac{1}{5}. Thay vào biểu thức (4) ta có: a-1=\sqrt{2}-1.

Vậy giá trị của biểu thức tại a=\sqrt{2} là \sqrt{2}-1.

d) 4 x-\sqrt{9 x^{2}+6 x+1}

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}

=4 x-|3x+1|

+) Với 3x+1 \geq 0 \Leftrightarrow x \ge -\dfrac{1}{3}, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-1(5)

+) Với 3x+1<0 \Leftrightarrow x <-\dfrac{1}{3}, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+1(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}. Thay vào biểu thức (6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+1.

Giá trị của biểu thức tại x=-\sqrt{3} là -7 \sqrt{3}+1.