K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Với n là số tự nhiên thảo mãn 6n+1 và 7n-1 là hai số tự nhiên không nguyên tố cùng nhau thì ước chung lớn nhất của 6n+1 và 7n-1 là bao nhiêu?2. Tính giá trị:\(A=1-2+3+4-5-6+7+8-9-...+2007+2008-2009-2010\)3. Cho \(a,b\in N\):Chứng minh rằng: Nếu a,b là hai số nguyên tố cùng nhau thì 7a+5b và 4a + 3b cũng là hai số nguyên tố cùng nhau.Tính giá...
Đọc tiếp

1.Với n là số tự nhiên thảo mãn 6n+1 và 7n-1 là hai số tự nhiên không nguyên tố cùng nhau thì ước chung lớn nhất của 6n+1 và 7n-1 là bao nhiêu?

2. Tính giá trị:

\(A=1-2+3+4-5-6+7+8-9-...+2007+2008-2009-2010\)

3. Cho \(a,b\in N\):

Chứng minh rằng: Nếu a,b là hai số nguyên tố cùng nhau thì 7a+5b và 4a + 3b cũng là hai số nguyên tố cùng nhau.

Tính giá trị:

a.\(A=\frac{5.\left(2^2.3^2\right).\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)

b.\(B=\frac{7.6^{10}.2^{20}.3^6-2^{19-6^{15}}}{9.6^{19}.2^9-4.3^{17}.2^{26}}\)

c.\(-2^{2008}-2^{2007}-2^{2006}-...-2^2-2-1\)

4. Tìm số nguyên x sao cho : (6x-1) chia hết cho (3x+2)

5.

a. Tìm các chữ số x,y để :\(B=\overline{x183y}\) chia cho 2,5 và 9 đều dư 1

b. Tìm số tự nhiên x, y sao cho: \(\left(2x+1\right).\left(y^2-5\right)=12\)

c. Tìm số tự niên x biết: \(5^x.5^{x+1}.5^{x+2}=100....0\)chia hết cho 218

6

\(ChoA=1+2015+2015^2+2015^3+...+2015^{98}+2015^{99}\)

Chứng minh rằng 2014A+1 là 1 số chính phương

 

 

0
1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a)...
Đọc tiếp

1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a) 5x = 125; b) 32x = 81 ; c) 52x-3 – 2.52 = 52 .3 8) Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương. 9) Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10. 10) Tính A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20 11) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. 12) Chứng minh nếu: (ab + cd + eg )⋮ 11 thì abc deg ⋮ 11. 13) Chứng minh 10 28 + 8 ⋮ 72. 14) Hai lớp 6A;6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 Kg còn lại mỗi bạn thu được 11 Kg ; Lớp 6B có 1 bạn thu được 25 Kg còn lại mỗi bạn thu được 10 Kg . Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200Kg đến 300 Kg. 15) So sánh: 222333 và 333222 16) Tìm các chữ số x và y để số 1x8y2 chia hết cho 36 17) Tìm số tự nhiên a biết 1960 và 2002 chia cho a có cùng số dư là 28 18) Cho : S = 30 + 32 + 34 + 36 + ... + 32002 a) Tính S b) Chứng minh S ⋮ 7 19) Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28 20) Tìm chữ số tận cùng của các số sau: a) 571999 b) 931999 21) Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5. 22) Cho phân số b a (0 < a < b) cùng thêm m đơn vị (m > 0) vào tử và mẫu thì phân số mới lớn hơn hay bé hơn b a 23) Cho số 155*710* 4*16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396. 24) Chứng tỏ rằng: 2x + 3y chia hết cho 17 ⇔ 9x + 5y chia hết cho 17 25) Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất 26) Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số 27) Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 28) Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Ai làm nhanh mik tick

0
4 tháng 1 2018

Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?

Câu 1:

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Tick nha !!!

3 tháng 1 2016

TỰ LÀM ĐI TỚ BIT NHƯNG DÀI DÒNG LẮM

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước