cho 2 số hữu tỉ a/b và b/c với b>0 và d>0. chứng minh rằng a/b < b/c <=> ad<bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b khác dấu thì a < 0 và b > 0.
Suy ra (a/b) < (0/b) = 0 tức là a/b âm.
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
Cho 3 **** kiểu gì nào?
a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.
b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết \(a=bt\), với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\) cũng hữu tỉ.
c) Trong trường hợp này \(a,b\) có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\) là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\) cũng là số hữu tỉ.
Bài 1:
a) Ta có:
\(\frac{-1}{3}< 0\)
\(\frac{1}{100}>0\)
\(\Rightarrow\frac{-1}{3}< \frac{1}{100}\)
b)Ta có;
\(\frac{-231}{232}>-1\)
\(\frac{-1321}{1320}< -1\)
\(\Rightarrow\frac{-231}{232}>\frac{-1321}{1320}\)
c) Ta có:
\(\frac{-27}{29}< 0\)
\(\frac{272727}{292929}>0\)
\(\Rightarrow\frac{-27}{29}< \frac{272727}{292929}\)
Bài 2:
\(a\left(b+1\right)=ab+a\)
\(b\left(a+1\right)=ab+b\)
Mà \(a< b\)
\(\Rightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)