Cho tam giác ABC cân tại A có cạnh bên bằng 3cm. Gọi D là một điểm thuộc đáy BC. Qua D kẻ các đường thẳng song song với các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E. Tính tổng DE+DF
(giải hộ mk, mk mang ơn suốt đời)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAEF và ΔDFE có
góc AEF=góc DFE
EF chung
góc AFE=góc DEF
Do đó: ΔAEF=ΔDFE
Xét ΔEDC có góc EDC=góc ECD
nên ΔEDC cân tại E
=>ED=CE=3-AE
Xét ΔFBD có góc FDB=góc FBD
nên ΔFBD cân tại F
=>FD=FB=3-AF=3-DE=3-EC
ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm
Ta có: DF // AC(gt)
=> ∠D1 = ∠C (hai góc đồng vị) (1)
Lại có: ΔABC cân tại A
=> ∠B = ∠C (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠B = ∠D1
Hay ΔBFD cân tại F =>BF = DF (3)
Nối AD. Xét ΔAFD và ΔDEA có:
∠ADF =∠EAD(so le trong vì DF // AC)
AD cạnh chung
∠DAF =∠ADE (so le trong vì DE // AB)
Suy ra: ΔAFD= ΔDEA(g.c.g)
Nên AF = DE (hai cạnh tương ứng) (4)
Từ(3) và (4) suy ra: DE + DF = AF + BF = AB = 3cm
(hình 138).DE//AF, DF//AE nên DE=AF (1) (giải thích như bài 52)
DF//AC\(\Rightarrow\) \(\widehat{D1}=\widehat{C}\) (đồng vị)
\(\Delta ABC\) cân tại A\(\Rightarrow\)\(\widehat{B}=\widehat{C}\)
Suy ra :\(\widehat{D1}=\widehat{B}\)
\(\Delta FBD\) có \(\widehat{D1}=\widehat{B}\) suy ra \(\Delta FBD\) cân tại F \(\Rightarrow\)FB=FD (2)
Từ (1) và (2)\(\Rightarrow\)DE+DF=AF+FB=AB=3cm
Ta có hình vẽ
Ta có:
FD//EC và BF//ED
=> +) \(\widehat{FDB}=\widehat{ECD}\) (hai góc đồng vị ) (1)
+) \(\widehat{FBD}=\widehat{EDC}\) (hai góc đồng vị ) (2)
+)\(\widehat{DFB}=\widehat{FDE}\) (hai góc đồng vị )
+)\(\widehat{FDE}=\widehat{DFE}\) (hai góc đồng vị )
+)\(\widehat{EBF}=\widehat{DEC}\) (hai góc đồng vị )
+)\(\widehat{EDC}=\widehat{DEF}\) (hai góc đồng vị )
Ta lại có :
\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\) ( hai góc ở đáy của tam giác cân ) (3)
Từ (1);(2) và (3) ta suy ra:
+)\(\Delta FBD\) là tam giác cân tại F ( vì tam giác có 2 góc bằng nhau )
+)\(\Delta EDC\) là tam giác cân tại E ( vì tam giác có 2 góc bằng nhau )
=> +) FB=FD (4)
+) ED=EC (5)
Ta lại có:
*)\(\Delta FBD=\Delta DEF\) (g.c.g)
=> +) FB=ED ( hai cạnh tuơng ứng ) (6)
+) BD=FE ( hai cạnh tuơng ứng ) (7)
*)\(\Delta DFE=\Delta ECD\) (g.c.g)
=> +) FD=EC ( hai cạnh tuơng ứng ) (8)
+) FE=DC ( hai cạnh tuơng ứng ) (9)
Từ(4);(5);(6) và (8) suy ra:
FB=FD=DE=EC (10)
Ta lại có:
\(\Delta FBD=\Delta AFE\) (g.c.g)
=> AF=BF ( hai cạnh tương ứng ) (11)
=> \(AF=\dfrac{1}{2}AB=\dfrac{1}{2}.3=\dfrac{3}{2}=1,5\) (12)
Từ (10) và (11) suy ra:
AF=FD=ED (13)
Từ (12) và (13) suy ra:
FD=ED=1,5 (cm)
=> FD+ED=3 (cm)
Vậy DE+DF=3 (cm)
Xét ΔAEF và ΔDFE có
góc AEF=góc DFE
EF chung
góc AFE=góc DEF
Do đó: ΔAEF=ΔDFE
Xét ΔEDC có góc EDC=góc ECD
nên ΔEDC cân tại E
=>ED=CE=3-AE
Xét ΔFBD có góc FDB=góc FBD
nên ΔFBD cân tại F
=>FD=FB=3-AF=3-DE=3-EC
ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm
Xét ΔAEF và ΔDFE có
góc AEF=góc DFE
EF chung
góc AFE=góc DEF
Do đó: ΔAEF=ΔDFE
Xét ΔEDC có góc EDC=góc ECD
nên ΔEDC cân tại E
=>ED=CE=3-AE
Xét ΔFBD có góc FDB=góc FBD
nên ΔFBD cân tại F
=>FD=FB=3-AF=3-DE=3-EC
ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm
ABD = EDC (2 góc đồng vị, AB // DE)
mà ABD = ECD (tam giác ABC cân tại A)
=> EDC = ECD
=> Tam giác ECD cân tại E
=> ED = EC
Xét tam giác AFE và tam giác DEF có:
AFE = DEF (2 góc so le trong, AF // DE)
FE chung
FEA = EFD (2 góc so le trong, EA // FD)
=> Tam giác AFE = Tam giác DEF (g.c.g)
=> AE = DF (2 cạnh tương ứng)
mà ED = EC (chứng minh trên)
=> DF + ED = AE + EC = AC = 3 (cm)