K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

(x2 - 2x - 3)(x2 + 10x + 21) = 24

<=> (x - 3)(x + 1)(x + 3)(x + 7) = 24

<=> (x2 + 4x - 21)(x2 + 4x + 3) = 24

Đặt x2 + 4x - 21 = a

=> PT <=> a(a + 24) = 24

<=> a2 + 24a - 24 = 0

Tới đây thì đơn giản rồi nên b làm tiếp nhé

20 tháng 1 2017

ủa mà bạn KQ sau dấu = là 25 mà sao bạn lai làm là 24 ???????????

ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

Ta có: \(\frac{x+25}{2x^2-50}-\frac{x+5}{x^2-5x}=\frac{5-x}{2x^2+10x}\)

\(\Leftrightarrow\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}-\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}+\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=0\)

Suy ra: \(x^2+25x-2\left(x^2+10x+25\right)+x^2-10x+25=0\)

\(\Leftrightarrow2x^2+15x+25-2x^2-20x-50=0\)

\(\Leftrightarrow-5x-25=0\)

\(\Leftrightarrow-5x=25\)

hay x=-5(loại)

Vậy: \(S=\varnothing\)

3 tháng 4 2022

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

3 tháng 4 2022

Tks ạ!

 

$ĐKXĐ : x \neq 2, x \neq -2$

Ta có : $1+\dfrac{2}{x-2} = \dfrac{2x^2}{x^2-4}$

$\to \dfrac{x^2-4+2.(x+2)}{(x-2).(x+2)} = \dfrac{2x^2}{(x-2).(x+2)}$

$\to x^2-4+2.(x+2)  = 2x^2$

$\to x^2 -2x - 8 = 0 $

$\to (x-4).(x+2) = 0 $

$\to x = 4$ ( Do $x \neq -2, 2$ )

Vậy \(S=\left\{4\right\}\)

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4

 

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

9 tháng 8 2017

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự

b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x^2+2x\\x^2-x-2=-x^2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-2=0\\2x^2+x-2=0\end{matrix}\right.\)

hay \(x\in\left\{-\dfrac{2}{3};\dfrac{-1+\sqrt{17}}{4};\dfrac{-1-\sqrt{17}}{4}\right\}\)

c: \(\Leftrightarrow\left[{}\begin{matrix}3x^2+10x+21=x^2-20x-9\\3x^2+10x+21=-x^2+20x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+30x+30=0\\4x^2-10x+12=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{-15+\sqrt{165}}{2};\dfrac{-15-\sqrt{165}}{2}\right\}\)

NV
6 tháng 10 2020

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\1-x-2x^2=\left(\frac{1-x}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\9x^2+2x-3=0\end{matrix}\right.\)

\(\Rightarrow x=\frac{-1\pm2\sqrt{7}}{9}\)