K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=2022(1/1-1/2+1/2-1/3+...+1/2021-1/2022)

  =2022(1/1-1/2022)

 =2022.2021/2022

ket qua tu tinh nha

25 tháng 4 2021

A = \(\dfrac{2022}{1.2}+\dfrac{2022}{2.3}+\dfrac{2022}{3.4}+...+\dfrac{2022}{2021.2022}\)

\(\dfrac{2022}{1}-\dfrac{2022}{2}+\dfrac{2022}{2}-\dfrac{2022}{3}+\dfrac{2022}{3}-\dfrac{2022}{4}+...+\dfrac{2022}{2021}-\dfrac{2022}{2022}\)

\(\dfrac{2022}{1}-\dfrac{2022}{2022}\)

\(2021\)

Chúc bạn học tốt!! ^^

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)

=>x+1=2022

hay x=2021

3a-b=1/2(a+b)

=>6a-2b=a+b

=>5a=3b

=>a/3=b/5=k

=>a=3k; b=5k

\(A=\dfrac{a^{2022}+3^{2022}}{b^{2022}+5^{2022}}\)

\(=\dfrac{3^{2022}\left(k^{2022}+1\right)}{5^{2022}\left(k^{2022}+1\right)}=\left(\dfrac{3}{5}\right)^{2022}\)

14 tháng 3 2023

A>B

14 tháng 3 2023

bạn có thể giải chi tiết được không ạ?

 

24 tháng 2 2023

Chỉ cho tớ cách làm đc ko? Tại nay gặp bài này rối quá.

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

 \(=\dfrac{2021}{2022}\left(\dfrac{6}{17}-\dfrac{23}{17}\right)+\dfrac{2021}{2022}=\dfrac{-2021}{2022}+\dfrac{2021}{2022}=0\)

2 tháng 5 2022

sửa rồi đó ạ