K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

a) <=> \(ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)

đồng nhất 2 vế ta có: a=1; b+ac= -1; bc+2a=0; 2b=2 => a=1; b=1; c=-2

b) <=> \(ay^3+\left(3a+b\right)y^2+\left(3b+c\right)y+3c=y^3+y^2-3y\) 

đồng nhất 2 vế ta có: a=1; 3a+b=1; 3b+c=-3; 3c=0 <=> a=1 => 3+b=1 <=> b=-2; c=0  mặt khác ta có: 3.(-2)+0 khác -3 => b =-2 không thỏa mãn => k xác định đc a,b,c trong trường hợp này

24 tháng 6 2016

\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3-x^2+2\)  với mọi x

\(=>x^2\left(ax+b\right)+cx\left(ax+b\right)+2\left(ax+b\right)=x^3-x^2+2\) với mọi x

\(=>ax^3+bx^2+acx^2+bcx+2ax+2b=x^3-x^2+2\)  với mọi x

\(=>ax^3+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3-x^2+2\)  với mọi x

\(=>\)  ax3=x3 =>a=1

(ac+b)x2=-x2=>ac+b=-1=>c+b=-1 (vì a=1)  (1)

(2a+bc)x=0=>2a+bc=0=>2+bc=0 (vì a=1)=>bc=-2

2b=2=>b=1

Thay vào (1) => c=-1-1=-2

Vậy a=1;b=1;c=-2

câu sau tương tự

7 tháng 6 2017

1 ) Ta có :

\(x^3-x^2+2=x^3-x+x-x^2+2=x\left(x^2-1\right)+\left[\left(-x^2+1\right)+\left(x+1\right)\right]\)

\(=x\left(x-1\right)\left(x+1\right)+\left[-\left(x-1\right)\left(x+1\right)+\left(x+1\right)\right]\)

\(=x\left(x-1\right)\left(x+1\right)+\left(x+1\right)\left(2-x\right)\)

\(=\left(x+1\right)\left[x\left(x-1\right)+2-x\right]=\left(x+1\right)\left(x^2-2x+2\right)\)

\(\Rightarrow\left(x^2+cx+2\right)\left(ax+b\right)=\left(x^2-2x+2\right)\left(x+1\right)\)

Đồng nhất ta được : \(\hept{\begin{cases}a=1\\b=1\\c=-2\end{cases}}\)

2 ) làm tương tự

19 tháng 9 2017

Đing Đức Hùng làm đúng roài

12 tháng 11 2016

+) Vì y và x tỉ lệ thuận với nhau nên:

\(y=kx\)

\(\Rightarrow y_1=k\cdot x_1\)

hay \(6=k\cdot3\)

\(\Rightarrow k=2\)

Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.

12 tháng 11 2016

+) Ta có bảng sau:

xx1=3x2=4x3=5x4=6
yy1=6y2=8x4=10x5=12

 

29 tháng 3 2017

x1 = 3; y1 = 6 nên hệ số tỉ lệ của y đối với x là 6 : 3 = 2

15 tháng 7 2021

B1

a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)

b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)

c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)

d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)

\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)

\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)

\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)

B2:

\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)

\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)

\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)

Bài 1: 

a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=x^2+2xy+y^2-x^2+2xy+y^2\)

=4xy

b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)^2\)

\(=\left(2y\right)^2=4y^2\)

c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)

\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)

\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)

\(=2a^2-4bc\)