Từ 4 số 1;2;3;4 có thể lập được bao nhiêu số có 3 chữ số chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Số chẵn có 4 chữ số khác nhau đc lập từ 2 ; 3 ; 5 ; 9 :
9632 ; 9352 ; 5932 ; 5392 ; 3952 ; 3592
Tổng là : 9632 + 9352 + 5932 + 5392 + 3952 + 3592 = 37852
Bài 2 :
Tương tự
Bài 3 :
Tương tự
Bài 4 :
Câu hỏi của minh mini - Toán lớp 4 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/184832485431.html
Bài 1: Tính tổng các số chẵn có 4 chữ số khác nhau từ các chữ số : 2 ; 3 ; 5 ; 9
3592 + 3952 + 5392 + 5932 + 9532 + 9352 = 37822
Bài 2 : Cho các chữ số : 1 ; 3 ; 5 ; 7 ; 9
Tính tổng các số có 4 chữ số khác nhau từ các chữ số trên ?
1357 + 1375 + 1359 + 1395
Câu 1:
#include <bits/stdc++.h>
using namespace std;
int t,i;
int main()
{
t=0;
for (i=1; i<=20; i++)
if (i%4==0) t=t+i;
cout<<t;
return 0;
}
2:
#include <bits/stdc++.h>
using namespace std;
int i,dem;
int main()
{
dem=0;
for (i=1; i<=20; i++)
if ((i%2==1) and (i%3==0)) dem++;
cout<<dem;
return 0;
}
Số bi lấy ra từ bình 1 là : (40 - 1 x 4) : (3 + 2 + 1) = 6 (viên).
Lúc đầu số lượng bi trong bốn bình là : (6 x 4 + 1) x 4 = 100 (viên).\
ĐS : 100 viên
Số cách lấy 1 quả cầu xanh:6
Số cách lấy 1 quả cầu đỏ:5
Số cách lấy 1 quả cầu vàng:4
Vậy số cách lấy 3 quả cầu khác màu là 6.5.4=120
Chọn D.
a.Số cách lấy 3 quả cầu cùng xanh: cách.
Số cách lấy 3 quả cầu cùng màu đỏ: cách.
Số cách lấy 3 quả cầu cùng vàng: cách.
Vậy số cách lấy 3 quả cầu cùng màu là:20+10=4=34 cách.
Chọn D
Đáp án : B
a/ Theo quy tắc cộng có 4+5+6 = 15 cách lấy ra một bi.
có 4 cách cho số 4 chữ số
có 3 cách cho số 3 chữ số
có 2 cách cho số có 2 chư số
có 1 cách cho số có 1 chữ số
các số đó có thể lập :
4 x 3 x 2 x 1 = 24 ( số )
đáp số : 24 số
Chọn D
Chọn cầu vàng: n 1 = 4 (cách chọn). Chọn cầu đỏ: n 2 = 5 - 1 = 4 (cách chọn).
Chọn cầu xanh n 3 = 6 - 2 = 4 (cách chọn). Theo quy tắc nhân, số cách chọn là: n = n 1 n 2 n 3 = 64
Đáp án A
+ Sắp xếp các viên bi thành ba hàng lần lượt là hàng 1 gồm 4 viên vi vàng đánh số từ 1 đến 4; hàng 2 gồm các 5 viên bi đỏ đánh số từ 1 đến 5, hàng 3 gồm 6 viên bi xanh đánh số từ 1 đến 6 (đóng thẳng cột như hình vẽ).
+ Việc lựa chọn tiến hành theo ba bước sau:
Bước 1: Chọn 1 viên bi vàng ở hàng thứ nhất: có 4 cách thực hiện.
Sau đó ta xóa đi cột chứa viên bi vàng vừa được chọn.
Bước 2: Chọn 1 viên bi đỏ từ hàng thứ hai từ 4 viên bi đỏ còn lại (1 viên bi đỏ bị loại bỏ sau bước thứ nhất): có 4 cách thực hiện.
Sau đó ta tiếp tục xóa cột chứa viên bi đỏ vừa được chọn.
Bước 3: Chọn 1 viên bi xanh từ 4 viên bi xanh còn lại ở hàng thứ ba: có 4 cách chọn.
Vậy theo quy tắc nhân, có: 4.4.4 = 64 cách chọn thỏa mãn.
Lập được 12 số có 3 chữ số chia hết cho 3: 123 ; 132 ; 321 ; 312 ; 213 ; 231 ; 234 ; 243 ; 324 ; 342 ; 432 ; 423