Tìm x thuộc N để A=1!+2!+3!+...+x! là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sẽ biết A khi xem lời giải sách các dạng trang 67 nhé ok
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
(+) Với n = 1
=> A=1 ( là số chính phương )
(+) Với n = 2
=> A = 3 ( không phải là số chính phương )
(+) ......
(+) Với \(n\ge4\)
Ta có : 1! + 2! + 3! + 4! = 33 có tận cúng là mà .
Mặt khhacs các số 5! ; 6! ; ... luôn có tận cùng = 0
=> A có tận cung là 3
Mà số chính phương không bao giờ có tận cùng là 3 .
=> n = 1
Vậ n = 1
Tra loi
Bn len google tra cho nhanh
Mk ns tht day
Hok tot Hien
Do \(x^2+3x+1\) là số chính phương nên \(x^2+3x+1=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4x^2+12x+4=4a^2\)
\(\Leftrightarrow\left[\left(2x\right)^2+2.2x.3+3^2\right]-4a^2-5=0\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2a\right)^2=5\)
\(\Leftrightarrow\left(2x-2a+3\right)\left(2x+2a+3\right)=5\)
Do x;a nguyên nên \(2x-2a+3\) và \(2x+2a+3\) là ước của 5
\(Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
Với \(2x-2a+3=1\) thì \(2x+2a+3=5\) => \(\left(a;x\right)=\left(1;0\right)\) (TM)
Với \(2x-2a+3=5\) thì \(2x+2a+3=1\) => \(\left(a;x\right)=\left(-1;0\right)\) (TM)
Với \(2x-2a+3=-1\) thì \(2x+2a+3=-5\) => \(\left(a;x\right)=\left(-1;-3\right)\) (loại)
Với \(2x-2a+3=-5\) thì \(2x+2a+3=-1\) => \(\left(a;x\right)=\left(-3;-1\right)\) (loại)
Vậy \(x=0\)