K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)

27 tháng 8 2017

20 tháng 2 2019

a, Ta có :

 A =  1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

2A =  2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101

A = 2A – A =  ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )

=  2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100

=  2 101 - 1

Vậy A =  2 101 - 1

b, Ta có.

B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99

5 2 B =  5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )

25B =  5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101

25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) –  ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )

24B =  5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99

24B =  5 101 - 5

B =  5 101 - 5 24 = 5 5 100 - 1 24

Vậy B =  5 5 100 - 1 24

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

a: \(\left[600-\left(40:2^3+3\cdot5^3\right)\right]:5\)

\(=\left[600-5-375\right]:5\)

\(=44\)

b: \(16\cdot12^2-\left(4\cdot23^2-59\cdot4\right)\)

\(=16\cdot144-4\cdot\left(23^2-59\right)\)

\(=2304-4\cdot470\)

\(=424\)

 

c: Ta có: \(2^{100}-\left(1+2+2^2+2^3+...+2^{99}\right)\)

\(=2^{100}-2^{100}+1\)

=1

d: Ta có: \(169\cdot2011^0-17\cdot\left(83-1702:23+1^{2012}\right)+2^7:2^4\)

\(=169-17\cdot\left(83-74+1\right)+2^3\)

\(=177-17\cdot10\)

=7

26 tháng 8 2021

\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Leftrightarrow A=2^{101}-1\)

26 tháng 8 2021

Đặt biểu thức là A

ta có 2A-A=2^101-1