K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

/x-1/> hoặc = 0=> /x-1/=0  (1)

(x-y)^2> hoặc bằng 0 => (x-y)^2=0   (2)

từ (1) và (2) => A nhỏ nhất =2017

13 tháng 3 2017

GTNN của A = 2017

:D :D

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

10 tháng 12 2021

\(M=\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ M_{min}=-\dfrac{1}{4}\Leftrightarrow x=y=-\dfrac{1}{2}\)

10 tháng 12 2021

Wow

 

26 tháng 7 2016

Với x>0thif D=x+x=2x>0                                  (1)

Với \(x\le0\) thì D=x-x=0                                 (2)

Từ (1) và(2) =>:GTNN của D bằng 0 khi và chỉ khi \(x\le0\)

mk nhé bạn ^...^ ^_^

24 tháng 2 2018

Ta có : 

\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\)  và có GTNN

\(\Rightarrow\)\(x=1\)

\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)

Vậy \(M_{min}=-3\) khi \(x=1\)

8 tháng 10 2017

ta có

can x+1 >=0 voi moi x

can 6-x >=0 voi moi x

=> căn x+1 + căn 6-x >= 0

8 tháng 10 2017

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7                                        => Q\(\ge\)\(\sqrt{7}\)

dấu bằng khi x=-1 hoặc x=6

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14             => Q\(\le\) \(\sqrt{14}\)

dấu bằng khi x+1 = 6-x    <=> 2x =5     <=> x=2.5

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

1 tháng 3 2016

giúp với mình sắp nạp rồi