K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:

Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.

Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:

Nhóm toán có 4!=24 cách.

Nhóm văn có 2!=2 cách.

Nhóm anh có 6!=720 cách.

Theo quy tắc nhân có :  6.24.2.720=207360 cách.

Chọn B.

NV
20 tháng 4 2023

Xếp 5 quyển Toán cạnh nhau: \(5!\) cách

Xếp 5 quyển Lý cạnh nhau: \(4!\) cách 

Xếp 3 quyển Văn cạnh nhau: \(3!\) cách

Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách

Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách 

TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách 

TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách 

Tổng số cách: $A_1+A_2+A_3=3024$ cách 

28 tháng 8 2021

Số cách chọn 3 quyển sách văn là \(C^3_4=4\).

Số cách chọn 3 quyển sách anh là \(C^3_5=10\).

a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.

b, Coi số sách mỗi loại là một phần tử.

Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.

28 tháng 8 2021

a, mình nghĩ là 216

b,6 chắc

tik mik nhha

14 tháng 1 2019

Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách

Chọn B

13 tháng 12 2019

Chọn A

 

T.A

 

T.A

 

T.A

 

T.A

 

T.A

 

T.A

 

T.A

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

Gọi Ω  là biến cố “xếp  quyển sách lên kệ sách một cách tùy ý” 

=> n( Ω ) = 14!

A là biến cố “xếp 14 cuốn sách lên kệ sách sao cho hai cuốn sách cùng môn không ở cạnh nhau”.

- Xếp  quyển sách Tiếng Anh vào kệ có 7! cách.

-  quyển sách Tiếng Anh tạo ra 8 chỗ trống (gồm 6 chỗ trống ở giữa và 2 chỗ trống trước sau).

 

Đánh số từ 1 đến 8, từ trái sang phải cho các chỗ trống. Khi đó ta xét các trường hợp:

 

TH1: Xếp sách Văn hoặc Toán vào vị trí từ 1 đến 7 có 7! cách.

TH2: Xếp sách Văn hoặc Toán vào vị trí từ 2 đến 8 có 7! cách.

TH3: Xếp  cặp sách Văn – Toán chung vào ngăn, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại. Ta có:

+ Số cách chọn  cặp sách Văn – Toán:  3.4 cách.

 

+ Vị trí 2 cuốn sách trong cặp sách: 2! cách.

+ Xếp các sách còn lại vào các ngăn 3,4,5,6,7 có 5! cách

Vậy ta có số cách xếp 1 cặp sách Văn – Toán chung vào ngăn 2, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại là 3.4.2!.5! cách.

Tương tự cho xếp cặp sách Văn – Toán lần lượt vào các ngăn 3,4,5,6,7

Số trường hợp thuận lợi của biến cố là 

28 tháng 11 2016

34

28 tháng 11 2016

34560

20 tháng 7 2017

Đáp án A.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật

Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.

Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_

Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3  cách.

Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.

Vậy xác suất cần tính là  P = 240 . A 4 3 . 3 10 ! = 1 210 .

28 tháng 10 2018

Đáp án A

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật

Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5 ! .2 ! = 240  cách.

Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_

Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3  cách.

Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.

Vậy xác suất cần tính là  P = 240. A 4 3 .3 10 ! = 1 210 .

10 tháng 10 2017

HD: Xếp 10 quyển sách tham khảo thành một hàng ngang trên giá sách có : 10! cách sắp xếp.

Sắp xếp 2 cuốn toán 1 và toán 2 cạnh nhau có 2! cách,

Sắp xếp 6 cuốn sách Toán sao cho có hai quyển Toán T1 và Toàn T2 cạnh nhau có 2!.5! cách.

Khi đó có 4 vị trí để sắp xếp 3 cuốn Anh ở giữa hai quyển Toán và 3 cách sắp xếp cuốn Tiếng Anh.