1) tìm giá trị nhỏ nhất của M = x(x-4) + 13
2) tìm giá trị lớn nhất của P = x(10-x) +6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2-4x+4+9=\left(x-2\right)^2+9\ge9\Rightarrow MinM=9\Leftrightarrow x=2\)
\(P=10x-x^2+6=-\left(x^2-10x+25\right)+25+6=31-\left(x-5\right)^2\le31\Rightarrow MaxP=31\Leftrightarrow x=5\)
M = (x - 1)(x - 3)(x - 4)(x - 6) + 10
M = (x-1)(x-6)(x-3)(x-4) + 10
M = (x^2 - 7x + 6)(x^2 - 7x + 12) + 10
đặt x^2 - 7x + 6 = t
=> M = t(t + 6) + 10
= t^2 + 6t + 10
= t^2 + 2.t.3 + 9 + 1
= (t+3)^2 + 1
(t + 3)^2 > 0
=> M > 1
dấu = xảy ra khi
(t + 3)^2 = 0
=> t + 3 = 0
mà t = x^2 - 7x + 6
=> x^2 - 7x + 6 + 3 = 0
=> x^2 - 7x + 9 = 0
=>
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Lời giải:
a. Áp dụng BĐT Cô-si:
$x^4+9\geq 6x^2$
$y^4+9\geq 6y^2$
$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$
$A+18\geq 36$
$A\geq 18$
Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$
b.
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 12\geq (x+y)^2$
$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 6\geq 2C$
$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$
1) tìm giá trị nhỏ nhất của M = x(x-4) + 13
M=x(x-4)+13=x2-4x+13
=x2-4x+4+9
=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)
Dấu "=" xảy ra khi x-2 =0
<=>x=2
Vậy giá trị nhỏ nhất của M là 9 tại x=2
2) tìm giá trị lớn nhất của P = x(10-x) +6
P = x(10-x) +6=10x-x2+6=-x2+10x-25+31
=-(x2-10x+25)+31
=-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)
Dấu = xảy ra khi x-5=0
<=>x=5
vậy giá trị lớn nhất của P là 31 tại x=5