K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

a, áp dụng hệ thức lượng cho các tam giác vuông AHB,AHC, ABC có các đường cao ta có:\(BE=\frac{BH^2}{AB};CF=\frac{HC^2}{AC};BE.CF=\frac{BH^2.HC^2}{AB.AC}=\frac{AH^4}{AB.AC}\)\(BC=\frac{AB^2}{AH}\)

\(BC.CE.CF=\frac{AB^2}{AH}.\frac{AH^4}{AB.AC}=\frac{AH^3.AB}{AC}=AH^3.\frac{AB}{AC}\).

tam giác này người ta k cho cân => AB/AC không =1 đc => BC.BE.CF khác AH^3

\(EB=\frac{BH^2}{AB};FC=\frac{HC^2}{AC}\Rightarrow\frac{EB}{FC}=\frac{BH^2.AC}{AB.HC^2}\). VỚI TAM GIÁC ABC TA CÓ: \(BH=\frac{AB^2}{BC}\Rightarrow BH^2=\frac{AB^4}{BC}\Leftrightarrow HC^2=\frac{AC^4}{BC}\) => \(\frac{EB}{FC}=\frac{\frac{AB^4}{BC}.AC}{AB.\frac{AC^4}{BC}}=\frac{AB^4.AC.BC}{AB.AC^4.BC}=\frac{AB^3}{AC^3}\)

B) C/M TỨ GIÁC AEHF LÀ HÌNH CHỮ NHẬT => EF=AH(T/C) => EF LỚN NHẤT <=> AH LỚN NHẤT

TỪ A KẺ TRUNG TUYẾN AM. \(AH\le AM\) (ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN) => AH LỚN NHẤT KHI AH=AM <=> AH=1/2 BC=1/2a<=> EF LỚN NHẤT =1/2a (AM LÀ TRUNG TUYẾN CỦA TAM GIÁC VUÔNG => = 1/2 CẠNH HUYỀN)

TỪ CÁC CÔNG THỨC ĐÃ LẬP Ở TRÊN, S AEHF=AE.AF=\(\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^4}{AB.AC}=\frac{AH^4}{\sqrt{BH.BC.HC.BC}}=\frac{AH^4}{BC\sqrt{AH^2}}=\frac{AH^3}{BC}\)

CHỈ LÀM ĐC ĐẾN ĐÂY THÔI :-/ DÙ SAO CŨNG ĐC ÍT NHIỀU :)

30 tháng 7 2017

Hình thì e tự vẽ nha

a)  Dễ dàng c/m đc AEHF là hcn => AH = EF

Áp dụng hệ thức lượng ta có

\(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2AH.BH\)

\(=BE^2+HE^2+CF^2+HF^2+2AH^2=BE^2+CF^2+2AH^2+\left(HE^2+HF^2\right)\)

\(=BE^2+CF^2+2AH^2+EF^2=BE^2+CF^2+2AH^2+AH^2\)

\(=BE^2+CF^2+3AH^2\)

b)  \(\Delta ABH\)  có  \(BE=\frac{BH^2}{AB}\)  \(\Rightarrow BE^2=\frac{BH^4}{AB^2}\)

Tương tự  \(CF^2=\frac{CH^4}{AC^2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và BĐT  \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

Do đó  \(BE^2+CF^2=\frac{BH^4}{AB^2}+\frac{CH^4}{AC^2}\ge\frac{\left(BH^2+CH^2\right)^2}{AB^2+AC^2}\ge\frac{\left[\frac{\left(BH+CH\right)^2}{2}\right]^2}{BC^2}=\frac{\left[\frac{BC^2}{2}\right]^2}{BC^2}\)

\(=\frac{\frac{BC^4}{4}}{BC^2}=\frac{BC^2}{4}=\frac{\left(2a\right)^2}{4}=a^2\)

Đẳng thức xảy ra  \(\Leftrightarrow BH=CH\)  hay H là trung điểm BC.

Như vậy AH vừa là đường cao, vừa là đường trung tuyến

=> Tam giác ABC vuông cân tại A.

p/s: làm lụi thôi nha, ko bt đúng ko nữa. Đúng thì cho mk 1 k nha

30 tháng 7 2017

cảm ơn nha làm lụi nhưng chắc đúng đó

5 tháng 7 2016

Ta thấy ngay DE = AH do EHDA là hình chữ nhật.

Gọi độ dài hai cạnh góc vuông lần lượt là x và y, khi đó ta có: \(AH=\frac{xy}{2a}\le\frac{x^2+y^2}{4a}=\frac{4a^2}{4a}=a\)

Vậy độ dài lớn nhất của DE là a, khi tam giác ABC vuông cân tại A.

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)

17 tháng 6 2023

loading...  

3 tháng 8 2017

a) Tương tự: https://h.vn/hoi-dap/question/392113.html (1)

EH // AC (cùng _I_ AB)

=> \(\widehat{BHE}=\widehat{HCF}\) (2 góc so le trong)

=> \(\Delta EBH\) ~ \(\Delta FHC\) (g - g)

\(\Rightarrow\frac{EB}{FH}=\frac{EH}{FC}\)

\(\Rightarrow EB\times FC=EH\times FH\)

\(\Rightarrow EB\times FC\times BC=BC\times EH\times FH\) (2)

Từ (1) và (2) => đpcm

b)

Thay AH = x và BC = 2a vào \(AH^3=BC\times EH\times FH\), ta có:

\(x^3=2a\times EH\times FH\)

\(\Rightarrow FA\times AE=\frac{x^3}{2a}\) (EH = FA và FH = AE)

\(S_{AEF}=\frac{1}{2}\times FA\times AE=\frac{1}{2}\times\frac{x^3}{2a}=\frac{x^3}{4a}\left(\text{đ}v\text{d}t\right)\)

4 tháng 8 2017

thks bn nha!!!