1)Cho biểu thức S = 1/5 + 1/13 + 1/25 + 1/37 + 1/61 + 1/77 + 1/113 chứng tỏ rằng S < 1/2
2)Tìm số ng:uyên x và y biết
( 2x + 1 ) . ( 2 - y ) = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi bài toán so sánh phân số : A = 1/5 + 1/13 + 1/25 + 1/37 + 1/61 +1/77 + 1/113 và B = 1/2
a, 1/5+1/6+1/7+1/8+1/9 < 1/5.5=1 (1)
1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17 < 1/10.7 < 1/10.10 < 1 (2)
Từ (1) và (2) , suy ra 1/5+1/6+1/7+...+1/17 < 1+1 =2
Suy ra , 1/5+1/6+1/7+...+1/17 < 2
b, Ta cần c/m 1/13+1/25+1/41+1/61+1/85+1/113 < 3/10 (Vì 1/2 - 1/5 = 3/10)
1/13+1/25+1/41+1/61+1/85+1/113 < 1/10+1/25+1/25+1/25+1/25+1/25
1/13+1/25+1/41+1/61+1/85+1/113 < 1/10 + 5/25 = 1/10+1/5 = 3/10
Suy ra , 1/5+1/13+1/25+1/41+1/61+1/85+1/113 < 1/2
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
câu hỏi tượng tự em ơi
Tương tự á Đinh Quang Minh