tìm p là số nguyên tố để p+ 10 và p+26 cũng là số nguyên tố
giải chi tiết giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét:
\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)
+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so
Vay p=2
b) Xét:'
\(+p=2\Rightarrow p+8=10\left(ktm\right)\)
\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)
\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)
\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)
\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)
Vay p=3
a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.
Xét p = 2 => 3.2 + 5 = 11 (nhận)
b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.
=> p = 3
hinh nhu may bai nay lop tren thi phai minh hoc lop 5 ma khong biet
Câu đó này khó đến cả mình không giải được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a; 19,29,59
b. 889=887+3 (887 nguyen to)
c.2001.2002.2003.2004 co tan cung la 4
vay 2001.2002.2003.2004 +1 co tan cung la 5
vay (c) luon chia het cho 5= hop so
p, p+2, p+4 nguyên tố?
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố
*p \(\ne\) 3:
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố
Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3
a)*Xét p=2=>p+2=4 là hợp số(loại)
*Xét p=3=>p+2=5
p+4=7(thoả mãn)
*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2
-Với p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số(loại)
-Với p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.
b)*Xét p=2=>p+10=12 là hợp số(loại)
*Xét p=3=>p+10=13
p+14=17(thoả mãn)
*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2
-Với p=3k+1=>p+14=3k+1+14=3k+15=3.(k+5) là hợp số(loại)
-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.
Ta thấy rằng 894 là 1 số chẵn nên sẽ là tổng của 2 số chẵn, 2 lẻ 1 chẵn. Mà số nguyên tố chẵn duy nhất là 2 (cũng là nhỏ nhất).
Vậy số nguyên tố nhỏ nhất cần tìm là 2
có vẻ thiếu cái gì đó. nếu DS=2
khi đó 894-2=892
Liệu có 892 có phân tích được thành 2 số nguyên tố.
Xét \(p=2\) thì \(p+10=2+10=12⋮2\) , p = 2 không thõa mãn
\(p=3\) ta có: p+10=13; p+26=29. Thõa mãn bài toán
Với p > 3 thì mọi số nguyên tố có dạng 3k + 1 hoặc 3k + 2 ; k ϵ N*.
Với p =3k +1 ta có:
p+26=3k +1+26 = 3k + 27 =3(k+9)⋮3. loại p = 3k +1
Với p = 3k +2 ta có:
p + 10 = 3k +2+10 = 3k + 12 = 3(k+4)⋮3. Loại p = 3k +2
Vậy p = 3 là đáp án duy nhất của bài toán.