Cho 2x + 3y chia het cho 17. Chứng minh 3x+5y chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 (2x + 3y ) + ( 9x + 5y ) = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ( 2x +3y ) chia hết cho 17 9x + 5y chia hết cho 17 (0,5đ)
Ngược lại ; Ta có 4 ( 2x + 3y ) chia hết cho 17 mà ( 4 ; 17 ) = 1
2x + 3y chia hết cho 17
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 (2x + 3y ) + ( 9x + 5y ) = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ( 2x +3y ) chia hết cho 17 9x + 5y chia hết cho 17 (0,5đ)
Ngược lại ; Ta có 4 ( 2x + 3y ) chia hết cho 17 mà ( 4 ; 17 ) = 1
2x + 3y chia hết cho 17
do \(4\left(2x+3y\right)+9x+5y=17x+17y=17\left(x+y\right)\)chia hết cho 17 \(\Rightarrow9x+5y\) chia hết cho 17
2x +3y chia hết cho 17 thì 2x + 3y + 17y + 34 x cũng chia hết cho 17
= 36x + 20y
= 4 ( 9x + 5 ý ) cùng chia hết cho 17
Có 2x + 3y chia hết cho 17 => 4.( 2x + 3y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
Vì 8x + 12y + 9x + 5y = 17x + 17y = 17( x + y ) chia hết cho 17
Mà 8x + 12y chia hết cho 17 => 9x + 5y chia hết cho 17 ( đpcm )
Ý 1: Chứng tỏ 2x + 3y chia hết cho 17 $\Leftrightarrow$⇔ 9x + 5y chia hết cho 17
2x+ 3y chia hết cho 17 $\Rightarrow$⇒4.(2x+ 3y) chia hết cho 17 hay 8x+ 12y chia hết cho 17
17.(x+y) chia hết cho 17 $\Rightarrow$⇒ 17x+17y chia hết cho 17
$\Rightarrow$⇒ (17x+17y ) -(8x+ 12y ) chia hết cho 17
$\Rightarrow$⇒ 17x+17y -8x- 12y chia hết cho 17
$\Rightarrow$⇒9x+y chia hết cho 17
Vậy 2x + 3y chia hết cho 17 $\Rightarrow$⇒ 9x + 5y chia hết cho 17 (1)
Ý 2 : chứng tỏ 9x + 5y chia hết cho 17 $\Rightarrow$⇒2x + 3y chia hết cho 17
9x + 5y chia hết cho 17 .... ..}
17 .(x+y) chia hết cho 17 => 17x+17y chia hết cho 17 }
$\Leftrightarrow$⇔ (17x+17y ) -(9x+ 5y ) chia hết cho 17
$\Leftrightarrow$⇔8x+12y chia hết cho 17
$\Leftrightarrow$⇔4.(2x + 3y) chia hết cho 17 (vì 4 không chia hết cho 17) $\Rightarrow$⇒2x + 3y chia hết cho 17
Vậy 9x + 5y chia hết cho 17 $\Rightarrow$⇒2x + 3y chia hết cho 17 (2)
Từ (1) và (2) =>2x + 3y chia hết cho 17 $\Leftrightarrow$⇔ 9x + 5y chia hết cho 17.
Ý 1: Chứng tỏ 2x + 3y chia hết cho 17 $$ 9x + 5y chia hết cho 17
2x+ 3y chia hết cho 17 $$4.(2x+ 3y) chia hết cho 17 hay 8x+ 12y chia hết cho 17
17.(x+y) chia hết cho 17 $$ 17x+17y chia hết cho 17
$$ (17x+17y ) -(8x+ 12y ) chia hết cho 17
$$ 17x+17y -8x- 12y chia hết cho 17
$$9x+y chia hết cho 17
Vậy 2x + 3y chia hết cho 17 $$ 9x + 5y chia hết cho 17 (1)
Ý 2 : chứng tỏ 9x + 5y chia hết cho 17 $$2x + 3y chia hết cho 17
9x + 5y chia hết cho 17 .... ..}
17 .(x+y) chia hết cho 17 => 17x+17y chia hết cho 17 }
$$ (17x+17y ) -(9x+ 5y ) chia hết cho 17
$$8x+12y chia hết cho 17
$$4.(2x + 3y) chia hết cho 17 (vì 4 không chia hết cho 17) $$2x + 3y chia hết cho 17
Vậy 9x + 5y chia hết cho 17 $$2x + 3y chia hết cho 17 (2)
Từ (1) và (2) =>2x + 3y chia hết cho 17 $$ 9x + 5y chia hết cho 17.
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 (2x + 3y ) + ( 9x + 5y ) = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ( 2x +3y ) chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ( 2x + 3y ) chia hết cho 17 mà ( 4 ; 17 ) = 1 2x + 3y chia hết cho 17
2x+3y chia hết 17 => 4(2x+3y) chia hết 17 hay 8x+12y chia hết 17
ta có:
8x+12y+9x+5y=17x+17y=17(x+y)
=> tổng trên chia hết 17, mà 8x+12y chia hết 17 (chứng minh trên) nên 9x+5y chia hết 17
Vì 2x+3y chia hết cho 17
nên 4(2x+3y) chia hết cho 17 suy ra 8x+12y chia hết cho 17
Có (8x+12y)+(9x+5y)=17x+17y=17(x+y) chia hết cho 17
mà 8x+12y chia hết cho 17 nên 9x+5y chia hết cho 17 (a+b=c,a chia hết cho d; c chia hết cho d suy ra b chia hết cho d)
Bạn xem lại đầu bài nhá :D
Bài này quá nhiều biến số nên ko giải được. Chú ý nhé