K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

1,(x+2) x (x-1)

= (x+2) . x - x+2

= x2 + 2x - x + 2

= x2+ 2x + (-x) +2

= x+ x + 2

mà (x+2).(x-1)>0

=>x+ x + 2>0.

=>x+ x > 1

=>x2 >1-x

=> x2>-x-1

do đó: không tìm được x cụ thể.

2,

30 tháng 7 2021

1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0

\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0

\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0

\(\Rightarrow\)-2x+64=0

\(\Rightarrow\)-2x=-64

\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)

\(\Rightarrow x=32\)

30 tháng 7 2021

2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50

\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50

\(\Rightarrow\)-62x+12=50

\(\Rightarrow\)-62x=50-12

\(\Rightarrow\)-62x=38

\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

1:

=>2x-3=0 hoặc 5/2-x=0

=>x=3/2 hoặc x=5/2

2: =>x=1/2+12=12,5

3: =>(2x+3/5-3/5)(2x+3/5+3/5)=0

=>2x(2x+6/5)=0

=>x=0 hoặc x=-3/5

4: =>-1/6x=-1/3

=>x=1/3:1/6=2

5: =>1/4:x=1/4

=>x=1

6: =>2/5x+11/15=1

=>2/5x=4/15

=>x=2/3

3: =>x+3>=0 và x-2<=0

=>-3<=x<=2

4: =>4x^2-4x+3x-3<x^2-2x+1

=>3x^2+x-2<0

=>3x^2+3x-2x-2<0

=>(x+1)(3x-2)<0

=>-1<x<2/3

2: =>x^4-8x>0

=>x(x^3-8)>0

=>x>2 hoặc x<0

 

26 tháng 1 2021

1)    x^2-x-(3x-3)=0

⇔   X^2-x-3x+3=0

⇔  x^2-4x+3     =0

⇔x^2-3x-x+3    =0

⇔ x(x-3)-(x-3)   =0

⇔(x-1)(x-3)       =0

⇔  x-1=0       -> x=1

      x-3=0       ->  x=3

Vậy tập nghiệm S={ 1;3}

NV
12 tháng 8 2021

1.

\(\left(x-5\right)^2+3\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

2.

\(\left(x^2-9\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

NV
12 tháng 8 2021

3.

\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right).3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

4.

\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

1) Ta có: \(\left(-5+x\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-5+x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

Vậy: \(x\in\left\{5;7\right\}\)

2) Ta có: \(\left(30-x\right)\left(2x-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}30-x=0\\2x-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-30\\2x=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\\x=8\end{matrix}\right.\)

Vậy: \(x\in\left\{30;8\right\}\)

3) Ta có: \(\left(-5-x\right)\left(17+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-5-x=0\\17+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=5\\x=0-17\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-17\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;-17\right\}\)

4) Ta có: \(\left(-3x+18\right)\left(-5x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+18=0\\-5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-18\\-5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{6;-2\right\}\)

17 tháng 1 2021

Bài nay ta có hai vế bạn hãy đặt giả sử một trong hai vế bằng 0 rồi giải phương trình cho mỗi vế bằng o

2: =>(x+1)(x-2)<0

=>-1<x<2

3: =>2x+1>0 hoặc x+5<0

=>x>-1/2 hoặc x<-5

4: =>(x+1)/(x-2)<0

=>-1<x<2

5: =>x+5<0

=>x<-5