Cho A= a.b.c trong đó a<0 , A >0 , b<c . Hãy so sánh b và c với số 0.
Giúp mình nhá các bạn ơi !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\left(vìa+b+c\ne0\right)\)
ta có:a/b=1 mà a=3 suy ra b=3
b/c=1 mà b=3 suy ra c=3
khi đó:a.b.c=3.3.3=27
Theo tính chất dãy tỉ số= nhau:
a/b=b/c=c/a=(a+b+c)/(b+c+a)=1
<=>a=b=c
Mà a=3
=>a=b=c=3
=>a.b.c=27
Vì \(a+b+c=0\Rightarrow a+b=-c\)
Ta có:
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab.\left(-c\right)+c^3=3abc\)
Do đó, với \(abc=3\) thì \(a^3+b^3+c^3=3.3=9\)
Ta có: a.b = c.(a + b) => a.b + c^2 = c.(a + b + c)
Do a và c nguyên tố cùng nhau nên (a, c) = 1. Từ đó suy ra (a^2, c) = 1 và (b^2, c) = 1.
Mà a.b + c^2 = c.(a + b + c) nên ta có:
a.b + c^2 ≡ 0 (mod c)
a.b ≡ -c^2 (mod c)
a.b ≡ 0 (mod c)
Vì (a, c) = 1 nên ta có (b, c) = 1.
Từ a.b = c.(a + b) và (a, c) = 1, suy ra a|b. Đặt b = a.k (k là số tự nhiên).
Thay vào a.b = c.(a + b), ta được:
a^2.k = c.(a + a.k) => k = c/(a^2 - c)
Vì k là số tự nhiên nên a^2 - c | c. Nhưng (a, c) = 1 nên a^2 - c không chia hết cho c. Do đó a^2 - c = 1.
Từ đó suy ra c = a^2 - 1.
Vậy a.b.c = a^2.b - b là số chính phương.
vì a<0;A>0 và b<c
=> a và b là số âm, còn c là số dương.
mà A>0 => c>0 vì A=a.b.c
vì b là số âm => b<0.
(do đó: b.c<0.)
vậy b<0 và c>0.
chúc học giỏi, k nha...
Có: a<0, A>0, b<c.
=> a và b là số nguyên âm, c là số nguyên dương.
mà A>0.
=> c>0(vì A=a.b.c).
mà b là số nguyên âm.
=>b<0.
Vậy b<, c>0.