Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\) có : \(\widehat{BAC}+\widehat{B_2}+\widehat{ACB}=180^0\)\(\Rightarrow\)\(\widehat{B_2}+\widehat{ACB}=90^0\)
Ta có : \(\widehat{DBC}=\widehat{B_1}+\widehat{B_2}\)\(\Rightarrow\)\(\widehat{B_1}+\widehat{B_2}=90^0\)
\(\Rightarrow\)\(\widehat{B_1}=\widehat{ACB}\)
Xét \(\Delta ABC\) Và \(\Delta DAB\)có :
\(\widehat{BAC}=\widehat{A\text{D}B}\) ( cùng = 900 )
\(\widehat{ACB}=\widehat{B_1}\)
\(\Rightarrow\) \(\Delta ABC\) \(~\) \(\Delta DAB\) ( g - g )
b) Áp dụng định lí Py - ta - go
vào \(\Delta ABC\)vuông tại A
BC2 = AB2 + AC2
BC2 = 152 + 202
BC2 = 225 + 400
BC2 = 625
BC = 25 ( cm )
Do \(\Delta ABC\)\(~\)\(\Delta DAB\)\(\Rightarrow\) \(\frac{AB}{BC}=\frac{A\text{D}}{AB}\)\(\Rightarrow\)\(\frac{15}{20}=\frac{A\text{D}}{15}\)\(\Rightarrow\)\(A\text{D}=\frac{15.15}{25}=9\)( cm )
Áp dụng định lí Py - Ta - Go vào \(\Delta DAB\) vuông tại A
AB2 = BD2 + AD2
152 = BD2 + 92
BD2 = 225 - 81
BD2 = 144
BD = 12 ( cm )
c) Do AD // BC \(\Rightarrow\)\(\frac{A\text{D}}{BC}=\frac{AI}{BI}\)\(\Rightarrow\)\(\frac{9}{25}=\frac{AI}{BI}\)
\(\Rightarrow\)\(\frac{9}{25}=\frac{AI}{AB-AI}\)\(\Rightarrow\)\(\frac{9}{25}=\frac{AI}{15-AI}\)\(\Rightarrow\)\(135-9AI=25AI\)\(\Rightarrow135=34AI\)\(\Rightarrow\)\(AI=\frac{135}{34}\)
Ta có : \(S_{\Delta AIC}=\frac{135}{34}.\frac{1}{2}.20=\frac{675}{17}\) ( cm2 )
\(S_{\Delta ABC}=\frac{1}{2}.15.20=150\) ( cm2 )
\(\Rightarrow\)\(S_{\Delta BIC}=S_{\Delta ABC}-S_{\Delta AIC}\)\(=150-\frac{675}{34}=\frac{1875}{17}\) ( cm2 )
a/ xet tam giac ABC VA tam giac DABco
AB chung
DAB =ABC(slt)
=>tam giac ABC DONG DANG TAM GIAC DAB(GG)
b/ap dung dinh ly pitago
bc^2=ab^2+ac^2
bc^2=15^2+20^2
bc=cang 525(tu tinh)
ta co ABC dong dang dab
=>ab/ad=bc/ab
=>ad=ab^2/bc
ad=125/cang525(tu tinh0
a: Xét ΔABC vuông tại A và ΔDAB vuông tại D có
góc ABC=góc DAB
=>ΔABC đồng dạng với ΔDAB
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
ΔABC đồng dạng với ΔDAB
=>AB/DA=BC/AB=AC/DB
=>15/DA=20/DB=25/15=5/3
=>DA=9cm; DB=12cm
Câu c là
Sau khi tìm đc DA rồi thì giờ là ông tìm cái mối quan hệ giửa ba điểm B;A;I thông qua sử dụng hệ quả ta let do à song song với BC a hay tính tỷ số BI/AB rồi tính Sabc đi.
Rồi giải thích là do tam giác ABC và tam giác BIC có cùng đường cao là AC nên
Sabc / Sbic là ba/bi
Từ đó tính đc ra đó nhé.
Chúc bạn học tốt!!!