cho bảng hình vuông kích thước 5x5 .Tô màu k ô vuông con của bảng sao cho bất kì bảng con cũng không quá 2 ô vuông con được tô màu . Chứng minh giá trị lớn nhất của k là 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
447324287432784247863481491294723534768974368934050458304249239042809
đây là toán tổ hợp rời rạc nên là bài của ĐT nên chắc em hiểu khái niệm về tổ hợp và chỉnh hợp chập k của n rồi nhỉ?
Ta sẽ có bài tổng quát sau nhé:
Cho hcn nx(n(n-1)+1) được tô bởi 2 màu xanh đỏ, Chứng minh rằng luôn tồn tại 1 hcn đặc biệt mà với mọi cách tô ta luôn có 4 góc cùng màu
CM: với n lẻ, (TH n chẵn CM tương tự)
Trong 1 cột luôn có ít nhất \(\frac{n+1}{2}\)ô cùng màu, và có \(\frac{n+1}{2}.C^{\frac{n+1}{2}}_n\)cách sắp xếp chúng trong cột 1
Mà có tất cả \(n^3-n^2+n\)ô => sẽ có ít nhất \(\frac{n^3-n^2+n+1}{2}\)ô cùng màu
do vậy trong n(n-1) cột còn lại luôn tồn tại 1 cột có cách tô màu cùng với cách tô ở cột 1
đó chính là hình chữ nhật cần tìm
ÁP DỤNG BÀI NÀY: ta dễ dàng tìm ra n=7
lời giải tổng quát có thể hơi khó hiểu nhưng áp dụng cụ thể cho bài này em sẽ thấy dễ hieur nhé!
Trên mỗi hình vuông con, kích thước2x2 chỉ có không quá 1 số chia hết cho 2, cũng vậy, có không quá 1 số chia hết cho 3
Lát kín bảng bởi 25 hình vuông, kích thước 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vì vậy, chúng phải là một trong các số 1,5,7.
Từ đó, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lần.
"Bảng con" là sao?