Cho x , y là các số dương thỏa mãn (11x + 6y + 2015) (x - y + 3) = 0 .
tìm giá trị nhỏ nhất của biểu thức P = xy - 5x + 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo nhá :))
(11x+6y+2015)(x-y+3)=0
=>x-y+3=0 vì x,y>0 nên 11x+6y+2015>0
=>y=x+3
=>P=x(x+3)-5x+2016=x2-2x+2016=(x-1)2+2015\(\ge2015\)
Vậy Pmin=2015 <=>x=1 và y=4
Cách làm của bạn Huy Thắng đúng nhưng bạn hơi nhầm một chút phần cuối. Chắc do bạn sơ suất.
\(P=\left(x-1\right)^2+2014\) nhé.
Trà My kết luận sai vì P = 2014 thì x =1 và y = 4.
Các em chú ý đừng để sai những chi tiết nhỏ như vậy
Ta có : \(\left(11x+6y+2015\right)\left(x-y+3\right)=0\)
Mà \(x,y>0\)
=> \(11x+6y+2015>0\)
=> \(x-y+3=0\)
=> \(y=x+3\)
Ta có : \(P=x\left(x+3\right)-5x+2016\)
=> \(P=x^2+3x-5x+2016\)
=> \(P=x^2-2x+2015=\left(x-1\right)^2+2015\)
Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)
=> \(\left(x-1\right)^2+2015=P\ge2015\forall x\)
Vậy MinP = 2015 <=> x = 1 ( y = 4 )
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)
\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)
Đáp án C.
Ta có:
G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.
Xét hàm số
f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0 ∀ t ∈ ℝ
Do đó hàm số đồng biến trên ℝ suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1
⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1
Ta có: T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .
Đáp án C.
Ta có: GT
<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.
X é t h à m s ố f t = 5 t + t - 3 - t
⇒ f t = 5 t ln 5 + 1 + 3 - t ln 3 > 0 ∀ t ∈ ℝ
Do đó hàm số đồng biến trên ℝ suy ra
f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1
⇔ x = 2 y + 1 y - 1 ⇒ T = 2 y + 1 y - 1 + y .
Do x > 0 => y > 1.
Ta có:
T = 2 + y + 3 y - 1 = 3 + y - 1 + 3 y - 1 ≥ 3 + 2 3 .
(11x + 6y + 2015) (x - y + 3) = 0 => x - y + 3 = 0 do x ; y > 0 nên 11x + 6y + 2015 > 0
=> y = x + 3.
=> P = x(x+3) - 5x + 2016 = x2 - 2x + 2016 = (x - 1)2 + 2015 \(\ge\) 2015 với mọi x
Vậy Min P = 2015 khi x - 1 = 0 <=> x = 1 => y = 4
sÀm sí