K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{1006}{1007}\)

=1/2014-(1/1*2+1/2*3+...+1/2013*2014)

=1/2014-(1-1/2+1/2-1/3+...+1/2013-1/2014)

=1/2014-1+1/2014

=1/1007-1=-1006/1007

17 tháng 6 2016

=\(-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2015}+\frac{1}{2014}-...-\frac{1}{2}+1\)

=\(-\frac{1}{2016}+1=\frac{2015}{2016}\)

17 tháng 6 2016

Ta có :\(\frac{-1}{2016.2015}-\frac{1}{2015.2014}-\frac{1}{2014.2013}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

       = \(-\left(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

       = \(-\left(\frac{1}{2016}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2014}-\frac{1}{2013}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)

       = \(-\left(\frac{1}{2016}-1\right)\)

       = \(-\left(-\frac{2015}{2016}\right)\)

      =  \(-\frac{2015}{2016}\)

Mk làm kĩ lắm rồi. ko tích nữa mk cũng chịu bạn luôn @@

12 tháng 9 2021

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)

12 tháng 9 2021

Giúp mình với khocroi

29 tháng 6 2021

\(=\frac{1}{2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{3-2}{3.2}-\frac{2-1}{2.1}\)

\(=\frac{1}{2014}-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{3}{3.2}-\frac{2}{3.2}\right)-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)

\(=\frac{1}{2014}+\left(\frac{1}{2014}-\frac{1}{2013}\right)+...+\left(\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{2}-1\right)\)

\(=\frac{1}{1007}-1\)

\(=\frac{-1006}{1007}\)

14 tháng 8 2021

Câu tl của bn lộn ở bước thứ 3 đấy đảo ngược 1/2013 và 1/2014 lại

\(F=-\dfrac{1}{1.2}-\dfrac{1}{2.3}-...-\dfrac{1}{2014.2015}-\dfrac{1}{2015.2016}\)

\(\Rightarrow-F=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}=1-\dfrac{1}{2016}=\dfrac{2015}{2016}\)\(\Rightarrow F=\dfrac{-2015}{2016}\)

19 tháng 6 2018

Giải:

\(F=\dfrac{-1}{2016.2015}-\dfrac{1}{2015.2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(\Leftrightarrow F=-\left(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+\dfrac{1}{2013.2012}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}+\dfrac{1}{2013.2014}+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(\Leftrightarrow F=-\left(\dfrac{1}{1}-\dfrac{1}{2016}\right)\)

\(\Leftrightarrow F=-\dfrac{2015}{2016}\)

Vậy ...

21 tháng 9 2017

Ta có : \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-......-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2013.2014}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=1-\left(1-\frac{1}{2014}\right)\)

\(=1-1+\frac{1}{2014}\)

\(=\frac{1}{2014}\)

21 tháng 9 2017

\(a,1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=1-\left(1-\frac{1}{2014}\right)\)

\(=1-1+\frac{1}{2014}\)

\(=\frac{1}{2014}\)

27 tháng 9 2019

\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)

\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)

....