tìm một số có 4cs mà khi đọc ngược lại sẽ tặng lên 6 lần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này là tìm 3 chữ số a, b, c biết
abc
x 3
cba
a =1 hoặc 2 hoặc 3 (nếu a>3 thì tích abcx3 có 4 chữ số), c phải từ 3 trở lên.
TH 1: a = 1
1bc
x 3
cb1
=> c = 7 (vì chỉ có 7 x 3 có tận cùng 1)
1b7
x 3
7b1
b lớn nhất =9, số nhớ vị trí thứ hai tối đa cũng là 3, chuyển sang vị trí hàng trăm sẽ không quá 6. Vậy không tìm được số b nào.
TH2: a=2
2bc
x 3
cb2
=> c = 4 (vì 4 x 3 tận cùng là 2)
2b4
x 3
4b2
Không thỏa mãn vì chữ số hàng trăm của hàng kết quả cũng phải từ 6 trở lên
TH3: a=3
3bc
x 3
cb3
=> c=1 (vì 1 x 3 = 3)
3b1
x 3
1b3
Không đúng vì chữ số hàng trăm ở dòng kết quả phải là 9.
Kết luận: Không có số nào thỏa mãn.
Chào bạn!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bạn vào câu hỏi tương tự nhá
Nhiều câu giống bạn lắm luôn
Học tốt nhá bạn !!!!!!!!
Gọi số cần tìm là abcd (a,d ∈ N* ; b,c ∈ N ; a,b,c,d < 10 )
Số viết theo thứ tự ngược lại là dcba
Theo bài ra , ta có : abcd . 6 = dcba
Ta thấy 6d có tận cùng là a nên a là số chẵn (1)
Mặt khác , a > 0 vì nếu a >1 thì dcba là số có nhiều hơn 4 chữ số .
Mà a thuộc tập hợp các số tự nhiên khác 0
=> a = 1
=> a là số lẻ , mâu thuẫn với (1)
=> abcd không có giá trị thỏa mãn đề bài
Vậy không có số nào thỏa mãn đề bài.
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Gọi số cần tìm là abcd (a,d \(\in\) N* ; b,c \(\in\) N ; a,b,c,d < 10 )
Số viết theo thứ tự ngược lại là dcba
Theo bài ra , ta có :
abcd . 6 = dcba
Ta thấy 6d có tận cùng là a nên a là số chẵn (1)
Mặt khác , a > 0 vì nếu a >1 thì dcba là số có nhiều hơn 4 chữ số .
Mà a thuộc tập hợp các số tự nhiên khác 0
=> a = 1
=> a là số lẻ , mâu thuẫn với (1)
=> abcd không có giá trị thỏa mãn đề bài
Vậy không có số nào thỏa mãn đề bài.
Gọi số cần tìm là \(\overline{abcd}\)( a khác 0)
Theo đề toán ta có :
\(6.\overline{abcd}=\overline{dcba}\\ \Rightarrow6000a+600b+60c+d=1000d+100c+10b+a\\ \Rightarrow5999a+590b=999d+40c\)
Mình giải đk tới đây thôi !!
Mội người tham khảo nhé !
Bạn ấy đã trả lời : " Không có số nào như vậy ". Ta có thể giải thích điều này như sau :
Giả sử số phải tìm là abcd ( 0 \(\le\)a ; b ; c ; d \(\le\)9 , a \(\ne\)0 ; d \(\ne\)0 )
Khi đó, abcd . 6 = dcba
a chỉ có thể bằng 1 vì nếu a bằng 2 thì abcd . 6 sẽ cho một số có 5 chữ số.
Mặt khác, tích của bất kì số tự nhiên nào với 6 cũng là một số chẵn, tức là a phải chẵn.
Mâu thuẫn này chứng tỏ không tồn tại các số nào thỏa mãn đề bài.
Kết luận này không chỉ đúng với số có bốn chữ số mà đúng với số có số chữ số tùy ý.
ko có số nào
Gọi số cần tìm là abcd (a,d ∈ N* ; b,c ∈ N ; a,b,c,d < 10 )
Số viết theo thứ tự ngược lại là dcba
Theo bài ra , ta có : abcd . 6 = dcba
Ta thấy 6d có tận cùng là a nên a là số chẵn (1)
Mặt khác , a > 0 vì nếu a >1 thì dcba là số có nhiều hơn 4 chữ số .
Mà a thuộc tập hợp các số tự nhiên khác 0
=> a = 1
=> a là số lẻ , mâu thuẫn với (1)
=> abcd không có giá trị thỏa mãn đề bài
Vậy không có số nào thỏa mãn đề bài.
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ