Tìm giá trị nhỏ nhất của biểu thức:
\(a^2+ab+b^2-3a-3b+2013.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.
Cách làm như sau:
\(4M=4a^2+4ab+4b^2-12a-12b+8004\)
\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)
\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)
\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)
Vậy 4M min = 7992, vây M min = 1998.
Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Lời giải:
Ta có:
\(4M=4a^2+4ab+4b^2-12a-12b+8052\)
\(=(4a^2+4ab+b^2)+3b^2-12a-12b+8052\)
\(=(2a+b)^2-6(2a+b)+9+3b^2-6b+8043\)
\(=[(2a+b)^2-6(2a+b)+9]+3(b^2-2b+1)+8040\)
\(=(2a+b-3)^2+3(b-1)^2+8040\)
\(\geq 0+3.0+8040=8040\)
\(\Rightarrow M\geq \frac{8040}{4}=2010\)
Vậy \(M_{\min}=2010\Leftrightarrow \left\{\begin{matrix} 2a+b-3=0\\ b-1=0\end{matrix}\right. \Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\)
https://vn.answers.yahoo.com/question/index?qid=20100903224130AAhmqxW
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
\(minM=1998\Leftrightarrow a=b=1\)
\(a^2+ab+b^2-3a-3b+2016=\left(a^2+a\left(b-3\right)+\frac{\left(b-3\right)^2}{4}\right)+\left(\frac{3b^2}{4}-\frac{3}{2}b+\frac{3}{4}\right)+2013\)
\(=\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013\ge2013\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a+\frac{b-3}{2}=0\\b-1=0\end{cases}\Leftrightarrow}a=b=1\)
Vậy BT đạt giá trị nhỏ nhất bằng 2013 tại a = b = 1
\(\left(a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3}{2}b\right)+\frac{3}{4}\left(b^2-2b+1\right)-\frac{9}{4}-\frac{3}{4}+2013\\ \)
\(\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013-3\)
GTNN=2010
Khi b=1 và a= 1
Hóa ra OLM vẫn còn ADMIN