Cho n là số tự nhiên.Chứng minh 2n+3 và n+1 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
Gọi ƯCLN (2n+3,n+1) là d
Ta có: 2n+3 chia hết cho d và n+1 chia hết cho d
=>2n+3 chia hết cho d và 2n+2 chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>2n+3-2n-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy với n là số tự nhiên thì 2n+3 và n+1 là 2 số nguyên tố cùng nhau.
Gọi\(ƯCLN\left(2n+3,n+1\right)=a\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮a\\n+1⋮a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮a\\2n+2⋮a\end{cases}}\Rightarrow2n+3-\left(2n+2\right)⋮a\)\(\Rightarrow1⋮a\Rightarrow a=1\RightarrowƯCLN\left(2n+3,n+1\right)=1\left(đpcm\right)\)
Gọi ƯC(2n + 3,n + 1) là d
Ta có: 2n + 3 ⋮ d
n + 1 ⋮ d => 2(n + 1) ⋮ d => 2n + 2 ⋮ d
=> 2n + 3 - (2n + 2) ⋮ d
=> 2n + 3 - 2n - 2 ⋮ d
=> 1 ⋮ d
=> d \(\in\)Ư(1)
=> d \(\in\){1}
=> ƯC(2n + 3,n + 1) = {1}
=> ƯCLN(2n + 3,n + 1) = 1
=> 2n + 3 và n + 1 là hai số nguyên tố cùng nhau