K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o

(theo tính chất tổng hai góc nhọn trong tam giác vuông)

 AHEˆ=BHDˆ(d.d)

nên EAHˆ=DBHˆ

Xét ΔAEH  ΔBEC ta có:

AH=BC(gt);EAHˆ=EBCˆ(cmt)

Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)

AE=BE (cặp cạnh tương ứng)

 AEBˆ=90o nên ΔAEB vuông cân tại E

BAEˆ=45o (theo tính chất của tam giác giác vuông cân)

hay BACˆ=45o

Vậy .....

Ta có:

EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o

(theo tính chất tổng hai góc nhọn trong tam giác vuông)

 AHEˆ=BHDˆ(d.d)

nên EAHˆ=DBHˆ

Xét ΔAEH  ΔBEC ta có:

AH=BC(gt);EAHˆ=EBCˆ(cmt)

Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)

AE=BE (cặp cạnh tương ứng)

 AEBˆ=90o nên ΔAEB vuông cân tại E

BAEˆ=45o (theo tính chất của tam giác giác vuông cân)

hay BACˆ=45o

Vậy .....

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

góc AGD=1/2*180=90 độ

=>GD vuông góc AH

=>GD//BC

b: ABHE nội tiếp

=>góc EHC=góc BAD

mà góc BAD=góc DCB

nên góc EHC=góc DCB

=>EH//CD

góc ACD=1/2*180=90 độ

=>AC vuông góc CD

=>EH vuông góc AC tại N

=>góc ANH=90 độ

a: Vì góc AEB=góc AHB=90 độ

=>AHBE nội tiếp

góc AGD=1/2*180=90 độ

=>AG vuông góc GD

=>GD//BC

b:

Xét ΔAHB vuông tại H và ΔACD vuông tạiC có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD

=>góc BAH=góc DAC

góc NAH+góc NHA

=góc ABE+góc BAE=90 độ

=>ΔAHN vuông tại N

9 tháng 3 2023

giúp câu c nha mn

 

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CD là đường cao ứng với cạnh AB(gt)

BE cắt CD tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH\(\perp\)BC

mà HM\(\perp\)BC(gt)

và AH,HM có điểm chung là H

nên A,H,M thẳng hàng(đpcm)

b) Xét ΔBMH vuông tại M và ΔBEC vuông tại E có 

\(\widehat{EBC}\) chung

Do đó: ΔBMH\(\sim\)ΔBEC(g-g)

Suy ra: \(\dfrac{BM}{BE}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BE\cdot BH=BM\cdot BC\)

Xét ΔCMH vuông tại M và ΔCDB vuông tại D có

\(\widehat{DCB}\) chung

Do đó: ΔCMH\(\sim\)ΔCDB(g-g)

Suy ra: \(\dfrac{CM}{CD}=\dfrac{CH}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CH\cdot CD=CM\cdot CB\)

Ta có: \(BE\cdot BH+CM\cdot CD\)

\(=BM\cdot BC+CM\cdot BC\)

\(=BC^2\)(đpcm)