Cho tam giác ABC nhọn . Kẻ AD vuông góc BC, BE vuông góc AC.
a. CMR:AD+BE< BC + AC
b. Gọi H là giao điểm của AD và BE , cho AC<BC . CMR HA<HB
C. CMR AC+BE< BC+AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
góc AGD=1/2*180=90 độ
=>GD vuông góc AH
=>GD//BC
b: ABHE nội tiếp
=>góc EHC=góc BAD
mà góc BAD=góc DCB
nên góc EHC=góc DCB
=>EH//CD
góc ACD=1/2*180=90 độ
=>AC vuông góc CD
=>EH vuông góc AC tại N
=>góc ANH=90 độ
a: Vì góc AEB=góc AHB=90 độ
=>AHBE nội tiếp
góc AGD=1/2*180=90 độ
=>AG vuông góc GD
=>GD//BC
b:
Xét ΔAHB vuông tại H và ΔACD vuông tạiC có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
=>góc BAH=góc DAC
góc NAH+góc NHA
=góc ABE+góc BAE=90 độ
=>ΔAHN vuông tại N
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CD là đường cao ứng với cạnh AB(gt)
BE cắt CD tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH\(\perp\)BC
mà HM\(\perp\)BC(gt)
và AH,HM có điểm chung là H
nên A,H,M thẳng hàng(đpcm)
b) Xét ΔBMH vuông tại M và ΔBEC vuông tại E có
\(\widehat{EBC}\) chung
Do đó: ΔBMH\(\sim\)ΔBEC(g-g)
Suy ra: \(\dfrac{BM}{BE}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BE\cdot BH=BM\cdot BC\)
Xét ΔCMH vuông tại M và ΔCDB vuông tại D có
\(\widehat{DCB}\) chung
Do đó: ΔCMH\(\sim\)ΔCDB(g-g)
Suy ra: \(\dfrac{CM}{CD}=\dfrac{CH}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CH\cdot CD=CM\cdot CB\)
Ta có: \(BE\cdot BH+CM\cdot CD\)
\(=BM\cdot BC+CM\cdot BC\)
\(=BC^2\)(đpcm)